David E Mcclelland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
8	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
12	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
13	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
14	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
15	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
16	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
17	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
18	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898

2

#	Article	IF	CITATIONS
19	GW 190521: A Binary Black Hole Merger with a Total Mass of <mmi:math xmlns:mml="http://www.w3.org/1998/Math/Math/L" display="inline">< mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext>A€6%stretchy="false">⊙. Physical Review</mmi:math 	nl ma text>	<nasadamsub></nasadamsub>
20	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
21	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
22	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
23	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
24	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	16.7	716
25	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
26	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
27	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
28	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
29	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
30	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
31	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
32	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
33	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
34	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
35	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
36	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	7.8	359

#	Article	IF	CITATIONS
37	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
38	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
39	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	4.7	286
40	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
41	Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 154-179.	1.6	259
42	Quantum metrology for gravitational wave astronomy. Nature Communications, 2010, 1, 121.	12.8	258
43	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
44	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
45	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
46	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	4.7	196
47	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
48	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
49	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
50	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
51	Experimental Demonstration of a Squeezing-Enhanced Power-Recycled Michelson Interferometer for Gravitational Wave Detection. Physical Review Letters, 2002, 88, 231102.	7.8	181
52	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
53	Squeezing in the Audio Gravitational-Wave Detection Band. Physical Review Letters, 2004, 93, 161105.	7.8	171
54	Observation and characterization of an optical spring. Physical Review A, 2004, 69, .	2.5	167

#	Article	IF	CITATIONS
55	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
56	Setting upper limits on the strength of periodic gravitational waves from PSRJ1939+2134using the first science data from the GEO 600 and LIGO detectors. Physical Review D, 2004, 69, .	4.7	165
57	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160
58	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
59	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
60	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
61	Analysis of LIGO data for gravitational waves from binary neutron stars. Physical Review D, 2004, 69, .	4.7	145
62	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
63	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143
64	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	142
65	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135
66	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
67	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
68	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	7.8	130
69	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	4.7	128
70	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
71	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	4.7	126
72	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125

#	Article	IF	CITATIONS
73	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
74	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	4.7	121
75	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
76	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	4.7	120
77	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	1.6	120
78	A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity, 2020, 37, 165003.	4.0	120
79	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
80	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
81	Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	114
82	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
83	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	4.7	110
84	Search for gravitational waves from galactic and extra-galactic binary neutron stars. Physical Review D, 2005, 72, .	4.7	109
85	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
86	First upper limits from LIGO on gravitational wave bursts. Physical Review D, 2004, 69, .	4.7	108
87	Demonstration of a passive subpicostrain fiber strain sensor. Optics Letters, 2005, 30, 1923.	3.3	108
88	Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Classical and Quantum Gravity, 2012, 29, 145015.	4.0	108
89	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107
90	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107

#	Article	IF	CITATIONS
91	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
92	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	105
93	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
94	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
95	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Physical Review D, 2018, 97, .	4.7	104
96	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
97	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
98	Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature, 2020, 583, 43-47.	27.8	102
99	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
100	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
101	Analysis of first LIGO science data for stochastic gravitational waves. Physical Review D, 2004, 69, .	4.7	96
102	Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics, 2021, 3, 344-366.	26.6	96
103	Optimization and transfer of vacuum squeezing from an optical parametric oscillator. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 469-474.	1.4	94
104	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
105	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
106	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
107	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
108	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91

#	Article	IF	CITATIONS
109	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	4.7	90
110	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
111	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	7.8	89
112	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
113	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
114	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
115	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
116	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	4.7	85
117	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
118	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
119	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
120	Frequency locking a laser to an optical cavity by use of spatial mode interference. Optics Letters, 1999, 24, 1499.	3.3	83
121	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
122	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	4.7	83
123	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. Physical Review D, 2005, 72, .	4.7	79
124	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	4.7	79
125	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
126	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	4.7	78

#	Article	IF	CITATIONS
127	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
128	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Physical Review D, 2019, 99, .	4.7	77
129	First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform. Physical Review D, 2005, 72, .	4.7	75
130	Search for gravitational waves from binary black hole inspirals in LIGO data. Physical Review D, 2006, 73, .	4.7	75
131	Searching for gravitational waves from Cassiopeia A with LIGO. Classical and Quantum Gravity, 2008, 25, 235011.	4.0	75
132	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
133	Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Physical Review D, 2005, 72, .	4.7	74
134	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
135	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
136	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
137	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	4.7	72
138	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
139	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
140	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
141	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
142	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
143	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
144	Quantum noise locking. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7, S421-S428.	1.4	68

#	Article	IF	CITATIONS
145	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
146	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
147	Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors. Laser and Photonics Reviews, 2011, 5, 677-696.	8.7	67
148	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
149	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
150	Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications. Journal of Lightwave Technology, 2005, 23, 1881-1889.	4.6	65
151	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
152	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
153	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
154	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
155	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
156	Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light. Optics Express, 2013, 21, 19047.	3.4	61
157	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
158	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	4.7	60
159	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
160	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
161	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
162	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60

#	Article	IF	CITATIONS
163	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
164	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
165	Intensity-noise properties of injection-locked lasers. Physical Review A, 1996, 54, 4370-4382.	2.5	59
166	Laser frequency stabilization by locking to a LISA arm. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 320, 9-21.	2.1	59
167	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
168	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	12.6	59
169	Upper limits on gravitational wave bursts in LIGO's second science run. Physical Review D, 2005, 72, .	4.7	57
170	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
171	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
172	Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Classical and Quantum Gravity, 2014, 31, 245010.	4.0	55
173	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	4.7	54
174	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
175	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
176	Cooling of a Gram-Scale Cantilever Flexure to 70ÂmK with a Servo-Modified Optical Spring. Physical Review Letters, 2008, 100, 010801.	7.8	52
177	High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing. Applied Optics, 2010, 49, 4029.	2.1	52
178	Ultra-low phase noise squeezed vacuum source for gravitational wave detectors. Optica, 2016, 3, 682.	9.3	52
179	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
180	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52

#	Article	IF	CITATIONS
181	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
182	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1806</mml:mn><mml:mo>â^`</mml:mo><mml:mn>20</mml:mn>hyper of 27 December 2004 using LIGO. Physical Review D, 2007, 76, .</mml:math 	flare	51
183	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
184	Intensity feedback effects on quantum-limited noise. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 1792.	2.1	48
185	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
186	Sensing and control in dual-recycling laser interferometer gravitational-wave detectors. Applied Optics, 2003, 42, 1244.	2.1	47
187	Quantum squeezed light in gravitational-wave detectors. Classical and Quantum Gravity, 2014, 31, 183001.	4.0	47
188	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
189	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
190	Picometer level displacement metrology with digitally enhanced heterodyne interferometry. Optics Express, 2009, 17, 828.	3.4	46
191	Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. Optics Letters, 2011, 36, 4680.	3.3	46
192	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
193	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
194	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
195	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	4.7	45
196	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
197	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
198	LISA pathfinder appreciably constrains collapse models. Physical Review D, 2017, 95, .	4.7	44

#	Article	IF	CITATIONS
199	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
200	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
201	Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 2936.	2.1	41
202	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	4.7	40
203	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	4.0	40
204	Compensation of Strong Thermal Lensing in High-Optical-Power Cavities. Physical Review Letters, 2006, 96, 231101.	7.8	40
205	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
206	Quantum-noise-limited interferometric phase measurements. Applied Optics, 1993, 32, 3481.	2.1	39
207	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
208	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	4.7	38
209	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	4.0	38
210	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
211	Broadband reduction of quantum radiation pressure noise via squeezed light injection. Nature Photonics, 2020, 14, 19-23.	31.4	37
212	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
213	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	4.7	35
214	Laser link acquisition demonstration for the GRACE Follow-On mission. Optics Express, 2014, 22, 11351.	3.4	35
215	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
216	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35

#	Article	IF	CITATIONS
217	Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies. Optics Express, 2009, 17, 11077.	3.4	34
218	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
219	High-bandwidth laser frequency stabilization to a fiber-optic delay line. Applied Optics, 2006, 45, 8491.	2.1	33
220	Suppression of classic and quantum radiation pressure noise by electro-optic feedback. Optics Letters, 1999, 24, 259.	3.3	32
221	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	32
222	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
223	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	7.8	32
224	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
225	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
226	Classical and quantum signatures of competingχ(2)nonlinearities. Physical Review A, 1997, 55, 4511-4515.	2.5	31
227	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
228	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
229	Squeezed light from second-harmonic generation: experiment versus theory. Optics Letters, 1995, 20, 1316.	3.3	30
230	Phase-sensitive reflection technique for characterization of a Fabry–Perot interferometer. Applied Optics, 2000, 39, 3638.	2.1	30
231	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
232	Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers. Optics Express, 2012, 20, 81.	3.4	29
233	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	4.7	29
234	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29

#	Article	IF	CITATIONS
235	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
236	Observation of Squeezed Light in the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mtext> </mml:mtext><mml:mtext> mathvariant="normal">m</mml:mtext></mml:mrow></mml:math> Region. Physical Review Letters, 2018, 120, 203603.	nl:mtext>< 7.8	mml;mi>î¼
237	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
238	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
239	High power compatible internally sensed optical phased array. Optics Express, 2016, 24, 13467.	3.4	28
240	Weak-light phase tracking with a low cycle slip rate. Optics Letters, 2014, 39, 5251.	3.3	27
241	Tunable narrow-linewidth laser at 2â€Î¼m wavelength for gravitational wave detector research. Optics Express, 2020, 28, 3280.	3.4	27
242	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
243	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
244	Experimental Demonstration of a Classical Analog to Quantum Noise Cancellation for Use in Gravitational Wave Detection. Physical Review Letters, 2004, 92, 161102.	7.8	25
245	Measurement of Gouy phase evolution by use of spatial mode interference. Optics Letters, 2004, 29, 2339.	3.3	25
246	Gingin High Optical Power Test Facility. Journal of Physics: Conference Series, 2006, 32, 368-373.	0.4	24
247	Technical limitations to homodyne detection at audio frequencies. Applied Optics, 2007, 46, 3389.	2.1	24
248	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	7.8	24
249	Point absorbers in Advanced LIGO. Applied Optics, 2021, 60, 4047.	1.8	24
250	Observation of quadrature squeezing in a cavity-atom system. Physical Review A, 1992, 46, R1181-R1184.	2.5	23
251	Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy. Optics Express, 2008, 16, 7726.	3.4	23
252	Three Successive and Interacting Shock Waves Generated by a Solar Flare. Astrophysical Journal, 2008, 684, L45-L49.	4.5	23

#	Article	IF	CITATIONS
253	Critical coupling control of a microresonator by laser amplitude modulation. Optics Express, 2012, 20, 12622.	3.4	23
254	Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator. Physical Review A, 2005, 72, .	2.5	22
255	Laser frequency-noise-limited ultrahigh resolution remote fiber sensing. Optics Express, 2006, 14, 4617.	3.4	22
256	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
257	Radiation-pressure-mediated control of an optomechanical cavity. Physical Review A, 2018, 97, .	2.5	22
258	Publisher's Note: Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy [Phys. Rev. D 93 , 112004 (2016)]. Physical Review D, 2018, 97, .	4.7	22
259	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
260	Generation and control of frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement. Nature Photonics, 2020, 14, 223-226.	31.4	22
261	Generation of a phase-flipped Gaussian mode for optical measurements. Journal of Optics, 2002, 4, 393-399.	1.5	21
262	Squeezed state generation for interferometric gravitational-wave detection. Classical and Quantum Gravity, 2006, 23, S245-S250.	4.0	21
263	Impact of backscattered light in a squeezing-enhanced interferometric gravitational-wave detector. Classical and Quantum Gravity, 2014, 31, 035017.	4.0	21
264	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
265	Analysis of light noise sources in a recycled Michelson interferometer with Fabry–Perot arms. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 120.	1.5	20
266	Photothermal effects in passive fiber Bragg grating resonators. Optics Letters, 2005, 30, 708.	3.3	20
267	AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 084005.	4.0	20
268	Laser frequency noise immunity in multiplexed displacement sensing. Optics Letters, 2011, 36, 672.	3.3	20
269	Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor. Classical and Quantum Gravity, 2017, 34, 135002.	4.0	20
270	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20

#	Article	IF	CITATIONS
271	ACIGA's high optical power test facility. Classical and Quantum Gravity, 2004, 21, S887-S893.	4.0	19
272	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
273	LIGOâ \in ™s quantum response to squeezed states. Physical Review D, 2021, 104, .	4.7	19
274	Digital Laser Frequency Stabilization Using an Optical Cavity. IEEE Journal of Quantum Electronics, 2010, 46, 1178-1183.	1.9	18
275	A squeezed light source operated under high vacuum. Scientific Reports, 2016, 5, 18052.	3.3	18
276	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
277	Squeezed light in a frontal-phase-modulated signal-recycled interferometer. Physical Review A, 1998, 57, 3898-3912.	2.5	17
278	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
279	Experimental demonstration of resonant sideband extraction in a Sagnac interferometer. Applied Optics, 1998, 37, 7995.	2.1	16
280	Laser frequency noise suppression by arm-locking in LISA: progress towards a bench-top demonstration. Classical and Quantum Gravity, 2005, 22, S221-S226.	4.0	16
281	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	4.0	16
282	An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 015502.	1.5	16
283	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	2.5	16
284	Feedback control of the intensity noise of injection locked lasers. Optics Communications, 1998, 145, 359-366.	2.1	14
285	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	4.0	14
286	Lasers and optics: looking towards third generation gravitational wave detectors. General Relativity and Gravitation, 2011, 43, 569-592.	2.0	14
287	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93,	4.7	14
288	An Overview of Recycling in Laser Interferometric Gravitational Wave Detectors. Australian Journal of Physics, 1995, 48, 953.	0.6	13

#	Article	IF	CITATIONS
289	Title is missing!. Optical and Quantum Electronics, 1999, 31, 571-582.	3.3	13
290	Arm cavity resonant sideband control for laser interferometric gravitational wave detectors. Optics Letters, 1999, 24, 1014.	3.3	13
291	Kerr noise reduction and squeezing. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 553-561.	1.4	13
292	Network sensitivity to geographical configuration. Classical and Quantum Gravity, 2002, 19, 1465-1470.	4.0	13
293	Frequency stability of spatial mode interference (tilt) locking. IEEE Journal of Quantum Electronics, 2002, 38, 1521-1528.	1.9	13
294	Coating-free mirrors for high precision interferometric experiments. Physical Review A, 2007, 76, .	2.5	13
295	Polarization speed meter for gravitational-wave detection. Physical Review D, 2012, 86, .	4.7	13
296	Internally sensed optical phased array. Optics Letters, 2013, 38, 1137.	3.3	13
297	The design and construction of a prototype lateral-transfer retro-reflector for inter-satellite laser ranging. Classical and Quantum Gravity, 2014, 31, 095015.	4.0	13
298	Quantum enhanced kHz gravitational wave detector with internal squeezing. Classical and Quantum Gravity, 2020, 37, 07LT02.	4.0	13
299	The atom-cavity system as a generator of quadrature squeezed states. Applied Physics B, Photophysics and Laser Chemistry, 1992, 55, 210-215.	1.5	12
300	External phase-modulation interferometry. Applied Optics, 1996, 35, 1623.	2.1	12
301	Experimental test of modular noise propagation theory for quantum optics. Physical Review A, 1996, 54, 3400-3404.	2.5	12
302	Understanding and controlling laser intensity noise. Optical and Quantum Electronics, 1999, 31, 583-598.	3.3	12
303	Power-recycled Michelson interferometer with resonant sideband extraction. Applied Optics, 2003, 42, 1283.	2.1	12
304	Subfrequency noise signal extraction in fiber-optic strain sensors using postprocessing. Optics Letters, 2012, 37, 2169.	3.3	12
305	A robust single-beam optical trap for a gram-scale mechanical oscillator. Scientific Reports, 2017, 7, 14546.	3.3	12
306	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12

#	Article	IF	CITATIONS
307	Experimental observation of spatial polarisation separation by absorptive self-focussing. Optics Communications, 1991, 84, 184-188.	2.1	11
308	Broadband and tuned signal recycling with a simple Michelson interferometer. Applied Optics, 1998, 37, 5886.	2.1	11
309	Variable reflectivity signal mirrors and signal response measurements. Classical and Quantum Gravity, 2002, 19, 1561-1568.	4.0	11
310	Improving the robustness of the advanced LIGO detectors to earthquakes. Classical and Quantum Gravity, 2020, 37, 235007.	4.0	11
311	Harmonic demodulation of nonstationary shot noise. Optics Letters, 1993, 18, 759.	3.3	10
312	Stable transfer of an optical frequency standard via a 46 km optical fiber. Optics Express, 2010, 18, 5213.	3.4	10
313	Tip-tilt mirror suspension: Beam steering for advanced laser interferometer gravitational wave observatory sensing and control signals. Review of Scientific Instruments, 2011, 82, 125108.	1.3	10
314	Coherent beam combining using a 2D internally sensed optical phased array. Applied Optics, 2014, 53, 4881.	1.8	10
315	Noiseless independent signal and power amplification. Optics Letters, 1998, 23, 540.	3.3	9
316	Optimal location of a new interferometric gravitational wave observatory. Physical Review D, 2006, 73, .	4.7	9
317	Optical-Fiber Accelerometer Array: Nano-g Infrasonic Operation in a Passive 100 km Loop. IEEE Sensors Journal, 2010, 10, 1117-1124.	4.7	9
318	Simple analytic approximation to continuous-wave on-resonance beam reshaping. Journal of the Optical Society of America B: Optical Physics, 1986, 3, 212.	2.1	8
319	Squeezed-state generation in a spatially varying field mode without adiabatic elimination. Physical Review A, 1990, 41, 5074-5087.	2.5	8
320	Resonant self-induced separation of polarization components: comparison between theory and experiment. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 60.	2.1	8
321	Tolerance of dual recycling laser interferometric gravitational wave detectors to mirror tilt and curvature errors. Physical Review D, 1993, 48, 5475-5484.	4.7	8
322	Spectral line removal in the LIGO Data Analysis System (LDAS). Classical and Quantum Gravity, 2003, 20, S721-S730.	4.0	8
323	Nonlinear phase matching locking via optical readout. Optics Express, 2006, 14, 11256.	3.4	8
324	Towards the SQL: Status of the direct thermal-noise measurements at the ANU. Journal of Physics: Conference Series, 2006, 32, 362-367.	0.4	8

#	Article	IF	CITATIONS
325	Stabilization of injection-locked lasers using spatial mode interference. IEEE Journal of Quantum Electronics, 2001, 37, 653-657.	1.9	7
326	Double pass locking and spatial mode locking for gravitational wave detectors. Classical and Quantum Gravity, 2002, 19, 1819-1824.	4.0	7
327	Analysis of a sub-shot-noise power recycled Michelson interferometer. Classical and Quantum Gravity, 2004, 21, S1037-S1043.	4.0	7
328	Using a Passive Fiber Ring Cavity to Generate Shot-Noise-Limited Laser Light for Low-Power Quantum Optics Applications. IEEE Photonics Technology Letters, 2007, 19, 1063-1065.	2.5	7
329	Control and tuning of a suspended Fabry–Perot cavity using digitally enhanced heterodyne interferometry. Optics Letters, 2012, 37, 4952.	3.3	7
330	Squeezed vacuum phase control at 2  μm. Optics Letters, 2019, 44, 5386.	3.3	7
331	Interferometric wavefront sensing with a single diode using spatial light modulation. Applied Optics, 2017, 56, 2353.	2.1	7
332	Laser Interferometer Gravitational-wave Observatories: An Overview. Journal of Modern Optics, 1990, 37, 1747-1759.	1.3	6
333	Interferometers with Internal and External Phase Modulation: Experimental and Analytical Comparison. Australian Journal of Physics, 1995, 48, 971.	0.6	6
334	Second-generation laser interferometry for gravitational wave detection: ACIGA progress. Classical and Quantum Gravity, 2001, 18, 4121-4126.	4.0	6
335	Experimental demonstration of variable-reflectivity signal recycling for interferometric gravitational-wave detectors. Optics Letters, 2002, 27, 1507.	3.3	6
336	Measurement of the frequency response of a bench-top quantum speed meter interferometer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 316, 17-23.	2.1	6
337	Spot size and Guoy phase invariant telescope for auto-alignment of resonant cavities. Classical and Quantum Gravity, 2004, 21, S909-S914.	4.0	6
338	Technology developments for ACIGA high power test facility for advanced interferometry. Classical and Quantum Gravity, 2005, 22, S199-S208.	4.0	6
339	Long distance high performance remote strain sensing with a fiber Fabry-Perot by radio-frequency laser modulation. , 2006, , .		6
340	A Stabilized Fiber Laser for High-Resolution Low-Frequency Strain Sensing. IEEE Sensors Journal, 2009, 9, 983-986.	4.7	6
341	Experimental demonstration of impedance match locking and control for coupled resonators. Optics Express, 2010, 18, 9314.	3.4	6
342	Measurable signatures of quantum mechanics in a classical spacetime. Physical Review D, 2017, 96, .	4.7	6

#	Article	IF	CITATIONS
343	Effects of transients in LIGO suspensions on searches for gravitational waves. Review of Scientific Instruments, 2017, 88, 124501.	1.3	6
344	Practical test mass and suspension configuration for a cryogenic kilohertz gravitational wave detector. Physical Review D, 2020, 102, .	4.7	6
345	Simulating the Performance of Michelson- and Sagnac-based Laser Interferometric Gravitational Wave Detectors in the Presence of Mirror Tilt and Curvature Errors. General Relativity and Gravitation, 1998, 30, 1055-1074.	2.0	5
346	Alignment locking to suspended Fabry-Perot cavity. General Relativity and Gravitation, 2005, 37, 1601-1608.	2.0	5
347	Experimental demonstration of in-loop intracavity intensity-noise suppression. IEEE Journal of Quantum Electronics, 2005, 41, 434-440.	1.9	5
348	A new topology for the control of complex interferometers. Classical and Quantum Gravity, 2006, 23, S267-S275.	4.0	5
349	Testing the GRACE follow-on triple mirror assembly. Classical and Quantum Gravity, 2014, 31, 195004.	4.0	5
350	Optical cavity enhanced real-time absorption spectroscopy of CO2 using laser amplitude modulation. Applied Physics Letters, 2014, 105, 053505.	3.3	5
351	Frequency dependence of thermal noise in gram-scale cantilever flexures. Physical Review D, 2015, 92, .	4.7	5
352	Multi-link laser interferometry architecture for interspacecraft displacement metrology. Journal of Geodesy, 2018, 92, 241-251.	3.6	5
353	Low phase noise squeezed vacuum for future generation gravitational wave detectors. Classical and Quantum Gravity, 2020, 37, 185014.	4.0	5
354	Quantum Optics Experiments with Atoms. Physica Scripta, 1992, T40, 40-48.	2.5	4
355	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	4.0	4
356	Pump–probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy. Optics Letters, 2005, 30, 1219.	3.3	4
357	Backscatter-immune, polarization managed, all fiber Sagnac sensing interferometer. Optics Express, 2007, 15, 3110.	3.4	4
358	Impact of non-stationary events on low frequency homodyne detection. Journal of Physics: Conference Series, 2008, 122, 012023.	0.4	4
359	Path length modulation technique for scatter noise immunity in squeezing measurements. Optics Letters, 2013, 38, 2265.	3.3	4
360	TorPeDO: A Low Frequency Gravitational Force Sensor. Journal of Physics: Conference Series, 2016, 716, 012027.	0.4	4

#	Article	IF	CITATIONS
361	Dual recycling laser interferometer gravitational wave detectors: simulating the performance with imperfect mirrors. Journal of Optics, 1995, 26, 145-149.	0.3	3
362	Variable focal-length lens for atoms. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 257.	2.1	3
363	Ultra-high resolution strain sensing by phase-sensitive interrogation of a passive fiber Bragg resonator. , 2005, , .		3
364	Quasi-static fiber strain sensing with absolute frequency referencing. , 2008, , .		3
365	THE AIGO PROJECT. International Journal of Modern Physics D, 2011, 20, 2087-2092.	2.1	3
366	QUANTUM SQUEEZING IN ADVANCED GRAVITATIONAL WAVE DETECTORS. International Journal of Modern Physics D, 2011, 20, 2043-2049.	2.1	3
367	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3
368	Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light. Review of Scientific Instruments, 2016, 87, 063104.	1.3	3
369	NUMERICAL WAVE OPTICS AND THE LENSING OF GRAVITATIONAL WAVES BY GLOBULAR CLUSTERS. , 2008, , .		3
370	Point Absorber Limits to Future Gravitational-Wave Detectors. Physical Review Letters, 2021, 127, 241102.	7.8	3
371	Progress in the search for the optimum light source: squeezing experiments with a frequency doubler. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1995, 7, 715-726.	0.9	2
372	Investigation of polarisation effects in injection locked lasers. Applied Physics B: Lasers and Optics, 1997, 64, 507-514.	2.2	2
373	High dynamic range flexure transfer function measurement. Classical and Quantum Gravity, 2002, 19, 1683-1687.	4.0	2
374	Australia's Role in Gravitational Wave Detection. Publications of the Astronomical Society of Australia, 2003, 20, 223-241.	3.4	2
375	The ACIGA data analysis programme. Classical and Quantum Gravity, 2004, 21, S853-S856.	4.0	2
376	Automatic alignment of a rigid spacer cavity. General Relativity and Gravitation, 2005, 37, 1591-1599.	2.0	2
377	Multiplexed fiber optic acoustic sensors in a 120 km loop using RF modulation. Proceedings of SPIE, 2007, , .	0.8	2
378	Passive nano-g fiber-accelerometer array over 100 km. Proceedings of SPIE, 2009, , .	0.8	2

1

#	Article	IF	CITATIONS
379	A Shot-Noise Limited Fiber Laser Source by Cascaded Passive Optical Filtering. IEEE Journal of Quantum Electronics, 2010, 46, 976-980.	1.9	2
380	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	4.7	2
381	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
382	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
383	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
384	In search of conclusive evidence on the trade-off and pecking order theories of capital structure: Evidence from the Johannesburg Stock Exchange. Investment Analysts Journal, 2018, 47, 15-30.	1.0	2
385	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
386	Automatic mode-matching of a Fabry-Pérot cavity with a single photodiode and spatial light modulation. Journal of Optics (United Kingdom), 2020, 22, 105605.	2.2	2
387	Matched template analysis of continuous wave laser for space debris ranging application. Advances in Space Research, 2022, 70, 1979-1987.	2.6	2
388	Dissipation by thermal forces in plasmas. Journal of Plasma Physics, 1984, 31, 47-65.	2.1	1
389	<title>Experiments and theory of laser noise: consequences for squeezing and injection locking</title> . , 1996, 2799, 157.		1
390	Noise Characterization for Laser Interferometer Gravitational Wave Detectors. General Relativity and Gravitation, 2000, 32, 411-423.	2.0	1
391	Laser Stabilisation for the Measurement of Thermal Noise. General Relativity and Gravitation, 2000, 32, 399-409.	2.0	1
392	Status of ACIGA High Power Test Facility for advanced interferometry. , 2004, , .		1
393	Are We There Yet? The Road to Gravitational Wave Detection. Publications of the Astronomical Society of Australia, 2005, 22, 175-178.	3.4	1
394	Interrogation of a passive fiber Bragg grating resonator sensor by current modulation of a diode laser. , 2005, , .		1
395	Rayleigh backscatter mitigation by RF modulation in a 100-km remote fiber sensing system. , 2007, 6538, 371.		1

A 100 km Ultra-High Performance Fiber Sensing System. , 2007, , .

#	Article	IF	CITATIONS
397	Differential cavity mode spectroscopy: A new cavity enhanced technique for the detection of weak transitions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 4650-4653.	2.1	1
398	Multiplexed fiber optic sensor array for geophysical survey. Proceedings of SPIE, 2008, , .	0.8	1
399	Backscatter immune Mach-Zehnder-Sagnac hybrid interferometric sensor. , 2008, , .		1
400	Algebraic cancellation of polarisation noise in fibre interferometers. Optics Express, 2016, 24, 10486.	3.4	1
401	An analysis of short put strategies and their role in asset allocation. Investment Analysts Journal, 2018, 47, 272-283.	1.0	1
402	A Comparison Between Digital and Analog Pound-Drever-Hall Laser Stabilization. , 2009, , .		1
403	Squeezed State Generation for Gravitational-Wave Detection. Springer Theses, 2015, , 65-83.	0.1	1
404	Optimal quantum noise cancellation with an entangled witness channel. Physical Review Research, 2021, 3, .	3.6	1
405	Dissipation by thermal forces in quantum plasmas. Journal of Plasma Physics, 1984, 32, 369-385.	2.1	0
406	Noiseless electro-optic processing of optical signals generated with squeezed light. Optics Express, 1998, 2, 100.	3.4	0
407	The ANU thermal noise experiment. AIP Conference Proceedings, 2000, , .	0.4	0
408	A power recycled Michelson interferometer with resonant sideband extraction. AIP Conference Proceedings, 2000, , .	0.4	0
409	Advanced interferometer configurations. , 2003, 4856, 270.		0
410	ACIGA: status report. , 2003, , .		0
411	Overview of Interferometer-Type Gravitational Wave Detectors. Highlights of Astronomy, 2005, 13, 30-33.	0.0	0
412	Dynamic photothermal resonance push-pull in a fiber Bragg grating Fabry-Perot. , 2005, , .		0
413	Cavity-enhanced spectroscopy using pump-probe differencing. , 2005, , .		0
414	Noise-cancelled, cavity-enhanced saturation laser spectroscopy for laser frequency stabilisation. Journal of Physics: Conference Series, 2006, 32, 161-166.	0.4	0

#	Article	IF	CITATIONS
415	Laser frequency noise-limited ultra-sensitive remote fiber strain detection system. , 2006, , .		Ο
416	Polarization Managed Sagnac Sensing Interferometer with Inherent Backscatter Rejection. , 2007, , .		0
417	Shot Noise Limited Fiber Laser Source by Frequency Locking to a Fiber Ring Cavity. , 2007, , .		0
418	Fiber Laser Mode Cleaning by Frequency Locking to a Fiber Ring Cavity. , 2007, , .		0
419	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. Physical Review D, 2007, 76, .	4.7	0
420	Ultra-Remote Fibre Optic Acoustic Sensing Array based on RF Modulation. , 2007, , .		0
421	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	4.7	0
422	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
423	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	4.7	0
424	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
425	Shot noise limited fiber laser source for sensing applications. , 2008, , .		0
426	Quasi-static fiber strain sensing with FM spectroscopy. , 2008, , .		0
427	Spectroscopic Sensing at the Quantum Limit by Active Cavity Impedance Matching. , 2009, , .		0
428	Optical absorption spectrometry using Laser amplitude modulation. , 2009, , .		0
429	Fiber optic strain sensing using an absolute frequency reference. , 2010, , .		0
430	Servo-modified optical spring. , 2011, , .		0
431	Multiplexed interferometric displacement sensing below the laser frequency noise limit. , 2011, , .		0
432	Quasi-static strain sensing using molecular spectroscopy. Proceedings of SPIE, 2011, , .	0.8	0

#	Article	IF	CITATIONS
433	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	Ο
434	A passive frequency noise insensitive fiber strain sensor using post processing. Proceedings of SPIE, 2012, , .	0.8	0
435	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	Ο
436	Ultra-Sensitive Remote Fiber Sensing by Radio-Frequency Current Modulation of a Diode Laser. , 2005, ,		0
437	Laser Noise-Limited Ultra-High Performance Remote Sensing with a Fiber-Fabry-Perot. , 2006, , .		Ο
438	Development of Strong and Low Frequency Squeezing , 2007, , .		0
439	A Stabilized Fiber Laser for Low Frequency, High Resolution Sensing. , 2009, , .		0
440	A Shot Noise Limited Fiber Laser Source. , 2009, , .		0
441	Atoms Optics with Standing Waves of Light. Springer Proceedings in Physics, 1994, , 36-46.	0.2	0
442	Intensity Noise Transfer in Diode-Pumped Nd:YAG Lasers. , 1997, , .		0
443	Squeezing-Enhancement of a 4Âkm LIGO Gravitational-Wave Detector. Springer Theses, 2015, , 147-171.	0.1	Ο
444	Quantum Optics and Light. Springer Theses, 2015, , 27-45.	0.1	0
445	The Doubly Resonant, Travelling-Wave Squeezed Light Source. Springer Theses, 2015, , 87-116.	0.1	Ο
446	Backscattered-Light Impact in a Squeezing-Enhanced Gravitational-Wave Detector. Springer Theses, 2015, , 173-186.	0.1	0
447	Overview of the LIGO Squeezed Light Injection Experiment. Springer Theses, 2015, , 133-145.	0.1	0
448	Non-classical Sources of Light and Their Applications to Gravitational Wave Detection. , 2017, , .		0
449	Quantum noise. International Journal of Population Studies, 2019, , 101-135.	0.1	0
450	Towards solid-state beam steering using a 7-emitter 1550 nm optical phased array. , 2019, , .		0

#	Article	IF	CITATIONS
451	Fast beam steering and agile wavefront control with an optical phased array. , 2019, , .		0