


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5793761/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A 5′ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants. Science China Life Sciences, 2022, 65, 1-15.                                    | 4.9  | 24        |
| 2  | Geminiviruses employ host DNA glycosylases to subvert DNA methylation-mediated defense. Nature<br>Communications, 2022, 13, 575.                         | 12.8 | 24        |
| 3  | Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nature Cell Biology, 2021, 23, 32-39.              | 10.3 | 89        |
| 4  | A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants.<br>Cell Host and Microbe, 2021, 29, 1393-1406.e7. | 11.0 | 54        |
| 5  | Global profiling of RNA–chromatin interactions reveals co-regulatory gene expression networks in<br>Arabidopsis. Nature Plants, 2021, 7, 1364-1378.      | 9.3  | 13        |
| 6  | 21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Nature Communications, 2020, 11,<br>5191.                                           | 12.8 | 56        |
| 7  | Jasmonate Signaling Enhances RNA Silencing and Antiviral Defense in Rice. Cell Host and Microbe, 2020, 28, 89-103.e8.                                    | 11.0 | 107       |
| 8  | Regulation of Rice Tillering by RNA-Directed DNA Methylation at Miniature Inverted-Repeat<br>Transposable Elements. Molecular Plant, 2020, 13, 851-863.  | 8.3  | 63        |
| 9  | MicroRNAs and Their Regulatory Roles in Plant–Environment Interactions. Annual Review of Plant<br>Biology, 2019, 70, 489-525.                            | 18.7 | 454       |
| 10 | Ligand-triggered allosteric ADP release primes a plant NLR complex. Science, 2019, 364, .                                                                | 12.6 | 334       |
| 11 | Reconstitution and structure of a plant NLR resistosome conferring immunity. Science, 2019, 364, .                                                       | 12.6 | 551       |
| 12 | Chloroplast-to-Nucleus Signaling Regulates MicroRNA Biogenesis in Arabidopsis. Developmental Cell,<br>2019, 48, 371-382.e4.                              | 7.0  | 81        |
| 13 | Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4.<br>Journal of Virology, 2019, 93, .                      | 3.4  | 38        |
| 14 | A Role for MINIYO and QUATRE-QUART2 in the Assembly of RNA Polymerases II, IV, and V in Arabidopsis.<br>Plant Cell, 2018, 30, 466-480.                   | 6.6  | 24        |
| 15 | Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Developmental Cell, 2018, 44, 348-361.e7.    | 7.0  | 121       |
| 16 | Stressâ€responsive regulation of long nonâ€coding <scp>RNA</scp> polyadenylation in <i>Oryza sativa</i> . Plant Journal, 2018, 93, 814-827.              | 5.7  | 86        |
| 17 | Plant non-coding RNAs and epigenetics. Science China Life Sciences, 2018, 61, 135-137.                                                                   | 4.9  | 5         |
| 18 | Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Research, 2018, 28, 35-47.                                            | 12.0 | 59        |

Yijun Qi

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | An expression atlas of miRNAs in Arabidopsis thaliana. Science China Life Sciences, 2018, 61, 178-189.                                                                     | 4.9  | 38        |
| 20 | Global identification of Arabidopsis IncRNAs reveals the regulation of MAF4 by a natural antisense<br>RNA. Nature Communications, 2018, 9, 5056.                           | 12.8 | 233       |
| 21 | ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 2017, 3, 16203.                                                                      | 9.3  | 189       |
| 22 | IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis. Plant Cell, 2017, 29, 589-599.                          | 6.6  | 19        |
| 23 | A receptor-like protein acts as a specificity switch for the regulation of stomatal development. Genes and Development, 2017, 31, 927-938.                                 | 5.9  | 97        |
| 24 | Efficient Generation of diRNAs Requires Components in the Posttranscriptional Gene Silencing<br>Pathway. Scientific Reports, 2017, 7, 301.                                 | 3.3  | 34        |
| 25 | Turnip Yellow Mosaic Virus P69 Interacts with and Suppresses GLK Transcription Factors to Cause<br>Pale-Green Symptoms in Arabidopsis. Molecular Plant, 2017, 10, 764-766. | 8.3  | 30        |
| 26 | Autophagy functions as an antiviral mechanism against geminiviruses in plants. ELife, 2017, 6, .                                                                           | 6.0  | 169       |
| 27 | TRANSPORTIN1 Promotes the Association of MicroRNA with ARGONAUTE1 in Arabidopsis. Plant Cell, 2016, 28, 2576-2585.                                                         | 6.6  | 52        |
| 28 | A Dicer-Independent Route for Biogenesis of siRNAs that Direct DNA Methylation in Arabidopsis.<br>Molecular Cell, 2016, 61, 222-235.                                       | 9.7  | 134       |
| 29 | RNAi in Plants: An Argonaute-Centered View. Plant Cell, 2016, 28, 272-285.                                                                                                 | 6.6  | 272       |
| 30 | Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis.<br>Nature Plants, 2015, 1, 15075.                                       | 9.3  | 114       |
| 31 | In memory of Professor Biao Ding (1960–2015). Journal of Integrative Plant Biology, 2015, 57, 730-731.                                                                     | 8.5  | 0         |
| 32 | RNA-directed repair of DNA double-strand breaks. DNA Repair, 2015, 32, 82-85.                                                                                              | 2.8  | 26        |
| 33 | CMA33/XCT Regulates Small RNA Production through Modulating the Transcription of Dicer-Like<br>Genes in Arabidopsis. Molecular Plant, 2015, 8, 1227-1236.                  | 8.3  | 36        |
| 34 | Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host<br>microRNA. ELife, 2015, 4, .                                          | 6.0  | 185       |
| 35 | Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination.<br>Cell Research, 2014, 24, 532-541.                                    | 12.0 | 166       |
| 36 | microRNAs in a multicellular green alga Volvox carteri. Science China Life Sciences, 2014, 57, 36-45.                                                                      | 4.9  | 30        |

Yijun Qi

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Characterization of stressâ€responsive lnc <scp>RNA</scp> s in <i><scp>A</scp>rabidopsis thaliana</i> by integrating expression, epigenetic and structural features. Plant Journal, 2014, 80, 848-861. | 5.7  | 264       |
| 38 | A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Research, 2013, 23, 645-657.                                                                                       | 12.0 | 91        |
| 39 | Small RNAs: Emerging key players in DNA double-strand break repair. Science China Life Sciences, 2013, 56, 933-936.                                                                                    | 4.9  | 5         |
| 40 | Roles of DICER-LIKE and ARGONAUTE Proteins in <i>TAS</i> -Derived Small Interfering RNA-Triggered DNA Methylation Â. Plant Physiology, 2012, 160, 990-999.                                             | 4.8  | 131       |
| 41 | A Role for Small RNAs in DNA Double-Strand Break Repair. Cell, 2012, 149, 101-112.                                                                                                                     | 28.9 | 537       |
| 42 | Cytoplasmic Assembly and Selective Nuclear Import of Arabidopsis ARGONAUTE4/siRNA Complexes.<br>Molecular Cell, 2012, 46, 859-870.                                                                     | 9.7  | 193       |
| 43 | An Importin β Protein Negatively Regulates MicroRNA Activity in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3565-3576.                                                                                 | 6.6  | 149       |
| 44 | DNA Methylation Mediated by a MicroRNA Pathway. Molecular Cell, 2010, 38, 465-475.                                                                                                                     | 9.7  | 548       |
| 45 | Purification of Arabidopsis Argonaute Complexes and Associated Small RNAs. Methods in Molecular<br>Biology, 2010, 592, 243-254.                                                                        | 0.9  | 13        |
| 46 | Rice MicroRNA Effector Complexes and Targets Â. Plant Cell, 2009, 21, 3421-3435.                                                                                                                       | 6.6  | 316       |
| 47 | Kismeth: Analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics, 2008, 9, 371.                                                                                          | 2.6  | 238       |
| 48 | Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20, 3186-3190.                                                                                                                           | 6.6  | 1,158     |
| 49 | Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide.<br>Cell, 2008, 133, 116-127.                                                                     | 28.9 | 1,196     |
| 50 | A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes and<br>Development, 2007, 21, 1190-1203.                                                                 | 5.9  | 367       |
| 51 | Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 2006, 443, 1008-1012.                                                                                | 27.8 | 416       |
| 52 | Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 2005, 19, 421-428.                                                                                               | 9.7  | 392       |