List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 2010, 5, 015101.	5.2	829
2	Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews, 2020, 203, 103118.	9.1	630
3	Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 2019, 100, 423-444.	3.3	590
4	Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. Journal of Geophysical Research, 2008, 113, .	3.3	282
5	Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 2019, 6, 796-809.	9.5	271
6	Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nature Communications, 2016, 7, 12574.	12.8	265
7	Microplastics in freshwater sediment: A review on methods, occurrence, and sources. Science of the Total Environment, 2021, 754, 141948.	8.0	245
8	Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Scientific Reports, 2015, 5, 9580.	3.3	180
9	Rapid warming in the Tibetan Plateau from observations and <scp>CMIP5</scp> models in recent decades. International Journal of Climatology, 2016, 36, 2660-2670.	3.5	176
10	Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. Journal of Glaciology, 2006, 52, 537-545.	2.2	162
11	Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Science Reviews, 2020, 201, 103043.	9.1	162
12	Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Science Reviews, 2021, 217, 103625.	9.1	157
13	Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics. Science of the Total Environment, 2021, 758, 143634.	8.0	153
14	Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmospheric Environment, 2007, 41, 1180-1187.	4.1	147
15	Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmospheric Research, 2018, 203, 141-163.	4.1	145
16	Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmospheric Research, 2007, 85, 351-360.	4.1	144
17	Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmospheric Research, 2019, 220, 20-33.	4.1	144
18	Atmospheric wet deposition of trace elements to central Tibetan Plateau. Applied Geochemistry, 2010, 25, 1415-1421.	3.0	143

#	Article	IF	CITATIONS
19	Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Science Bulletin, 2010, 55, 2072-2078.	1.7	140
20	A review of black carbon in snow and ice and its impact on the cryosphere. Earth-Science Reviews, 2020, 210, 103346.	9.1	139
21	Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the "Water Tower of Asia― Science of the Total Environment, 2019, 649, 571-581.	8.0	131
22	Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 2016, 50, 2859-2869.	10.0	130
23	Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. National Science Review, 2020, 7, 492-495.	9.5	128
24	PM2.5 and O3 pollution during 2015–2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts. Environmental Pollution, 2020, 264, 114694.	7.5	124
25	Historical Trends of Atmospheric Black Carbon on Tibetan Plateau As Reconstructed from a 150-Year Lake Sediment Record. Environmental Science & Technology, 2013, 47, 2579-2586.	10.0	123
26	Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia. Environmental Science & Technology, 2019, 53, 3471-3479.	10.0	115
27	Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles, 2009, 13, 411-423.	2.3	114
28	Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environmental Pollution, 2009, 157, 2261-2265.	7.5	114
29	Lightâ€absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6915-6933.	3.3	114
30	Baseline continental aerosol over the central Tibetan plateau and a case study of aerosol transport from South Asia. Atmospheric Environment, 2011, 45, 7370-7378.	4.1	112
31	Evaluation of extreme climate events using a regional climate model for China. International Journal of Climatology, 2015, 35, 888-902.	3.5	108
32	Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. Journal of Glaciology, 2013, 59, 137-148.	2.2	105
33	Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas. Atmospheric Environment, 2004, 38, 2819-2829.	4.1	104
34	Atmospheric Transport of Mercury to the Tibetan Plateau. Environmental Science & Technology, 2007, 41, 7632-7638.	10.0	103
35	Elemental and individual particle analysis of atmospheric aerosols from high Himalayas. Environmental Monitoring and Assessment, 2010, 160, 323-335.	2.7	100
36	Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Climate Dynamics, 2015, 45, 2831-2846.	3.8	95

#	Article	IF	CITATIONS
37	Aerosol optical properties at Nam Co, a remote site in central Tibetan Plateau. Atmospheric Research, 2009, 92, 42-48.	4.1	93
38	Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. Journal of Environmental Sciences, 2010, 22, 1748-1756.	6.1	93
39	Mercury Distribution and Deposition in Glacier Snow over Western China. Environmental Science & Technology, 2012, 46, 5404-5413.	10.0	93
40	Chemical Composition of Microbe-Derived Dissolved Organic Matter in Cryoconite in Tibetan Plateau Glaciers: Insights from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Analysis. Environmental Science & Technology, 2016, 50, 13215-13223.	10.0	92
41	Concentrations and light absorption characteristics of carbonaceous aerosol in PM 2.5 and PM 10 of Lhasa city, the Tibetan Plateau. Atmospheric Environment, 2016, 127, 340-346.	4.1	91
42	Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Science of the Total Environment, 2017, 587-588, 482-490.	8.0	91
43	Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmospheric Chemistry and Physics, 2017, 17, 8867-8885.	4.9	91
44	Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere, 2018, 12, 413-431.	3.9	89
45	Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmospheric Environment, 2007, 41, 7208-7218.	4.1	87
46	Concentrations of trace elements in wet deposition over the central Himalayas, Nepal. Atmospheric Environment, 2014, 95, 231-238.	4.1	86
47	Double-Nested Dynamical Downscaling Experiments over the Tibetan Plateau and Their Projection of Climate Change under Two RCP Scenarios. Journals of the Atmospheric Sciences, 2013, 70, 1278-1290.	1.7	85
48	Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley, Nepal. Science of the Total Environment, 2015, 538, 86-92.	8.0	85
49	Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model. Atmospheric Chemistry and Physics, 2018, 18, 11507-11527.	4.9	85
50	Wet deposition of mercury at a remote site in the Tibetan Plateau: Concentrations, speciation, and fluxes. Atmospheric Environment, 2012, 62, 540-550.	4.1	84
51	Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer. Atmospheric Chemistry and Physics, 2016, 16, 14937-14957.	4.9	83
52	Trace elements and lead isotopic composition of PM10 in Lhasa, Tibet. Atmospheric Environment, 2011, 45, 6210-6215.	4.1	82
53	Recent temperature increase recorded in an ice core in the source region of Yangtze River. Science Bulletin, 2007, 52, 825-831.	1.7	81
54	Humic-Like Substances (HULIS) in Aerosols of Central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, Light Absorption Properties, and Sources. Environmental Science & Technology, 2018, 52, 7203-7211.	10.0	78

#	Article	IF	CITATIONS
55	Indoor air pollution from burning yak dung as a household fuel in Tibet. Atmospheric Environment, 2015, 102, 406-412.	4.1	77
56	Wet precipitation chemistry at a high-altitude site (3,326Âm a.s.l.) in the southeastern Tibetan Plateau. Environmental Science and Pollution Research, 2013, 20, 5013-5027.	5.3	75
57	Size distribution of carbonaceous aerosols at a high-altitude site on the central Tibetan Plateau (Nam) Tj ETQq1 1	0,784314 4.1	rgBT /Overl
58	Modeling the Origin of Anthropogenic Black Carbon and Its Climatic Effect Over the Tibetan Plateau and Surrounding Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 671-692.	3.3	75
59	Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiology Letters, 2006, 265, 98-105.	1.8	72
60	Pre-monsoon air quality over Lumbini, aÂworld heritage site along the Himalayan foothills. Atmospheric Chemistry and Physics, 2017, 17, 11041-11063.	4.9	70
61	Research progresses of microplastic pollution in freshwater systems. Science of the Total Environment, 2021, 795, 148888.	8.0	70
62	Preliminary Health Risk Assessment of Potentially Toxic Metals in Surface Water of the Himalayan Rivers, Nepal. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 855-862.	2.7	69
63	Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Climate Dynamics, 2018, 51, 355-369.	3.8	68
64	Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nature Climate Change, 2020, 10, 1037-1044.	18.8	68
65	New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China. Science of the Total Environment, 2015, 529, 101-113.	8.0	67
66	Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350â€year Mount Everest ice core record. Journal of Geophysical Research, 2009, 114, .	3.3	65
67	Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. Cryosphere, 2016, 10, 2611-2621.	3.9	65
68	Diversity and succession of autotrophic microbial community in high-elevation soils along deglaciation chronosequence. FEMS Microbiology Ecology, 2016, 92, fiw160.	2.7	65
69	Yak dung combustion aerosols in the Tibetan Plateau: Chemical characteristics and influence on the local atmospheric environment. Atmospheric Research, 2015, 156, 58-66.	4.1	64
70	Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environmental Pollution, 2019, 253, 49-60.	7.5	64
71	Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Climate Dynamics, 2011, 36, 1633-1647.	3.8	63
72	Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Scientific Reports, 2017, 7, 40501.	3.3	63

#	Article	IF	CITATIONS
73	Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness. Atmospheric Chemistry and Physics, 2017, 17, 11293-11311.	4.9	63
74	Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China. Atmospheric Environment, 2016, 143, 79-85.	4.1	62
75	Chemical characteristics of soluble aerosols over the central Himalayas: insights into spatiotemporal variations and sources. Environmental Science and Pollution Research, 2017, 24, 24454-24472.	5.3	62
76	Clacier variations and climate warming and drying in the central Himalayas. Science Bulletin, 2004, 49, 65-69.	1.7	61
77	Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 2013, 447, 123-132.	8.0	61
78	Mercury in Wild Fish from High-Altitude Aquatic Ecosystems in the Tibetan Plateau. Environmental Science & Technology, 2014, 48, 5220-5228.	10.0	61
79	Major ions and trace elements of two selected rivers near Everest region, southern Himalayas, Nepal. Environmental Earth Sciences, 2016, 75, 1.	2.7	61
80	Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. Atmospheric Chemistry and Physics, 2018, 18, 12859-12875.	4.9	61
81	Evaluation of a Coupled Snow and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements and Time-Lapse Photography. Arctic, Antarctic, and Alpine Research, 2015, 47, 573-590.	1.1	60
82	Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environmental Pollution, 2019, 254, 112952.	7.5	59
83	Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau. Environmental Geology, 2008, 53, 1433-1440.	1.2	58
84	Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: Aerosol variations and sources. Atmospheric Environment, 2019, 207, 205-214.	4.1	58
85	Ionic composition of wet precipitation over the southern slope of central Himalayas, Nepal. Environmental Science and Pollution Research, 2014, 21, 2677-2687.	5.3	57
86	Stable-isotopic composition of precipitation over the northern slope of the central Himalaya. Journal of Glaciology, 2002, 48, 519-526.	2.2	55
87	Dust records from three ice cores: relationships to spring atmospheric circulation over the Northern Hemisphere. Atmospheric Environment, 2003, 37, 4823-4835.	4.1	55
88	Aerosol and fresh snow chemistry in the East Rongbuk Glacier on the northern slope of Mt. Qomolangma (Everest). Journal of Geophysical Research, 2007, 112, .	3.3	55
89	Characteristics and Changes in Air Temperature and Glacier's Response on the North Slope of Mt. Qomolangma (Mt. Everest). Arctic, Antarctic, and Alpine Research, 2011, 43, 147-160.	1.1	55
90	Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau. Chemosphere, 2013, 92, 871-881.	8.2	54

#	Article	IF	CITATIONS
91	Tibetan Plateau amplification of climate extremes under global warming of 1.5°C, 2°C and 3°C. Global and Planetary Change, 2020, 192, 103261.	3.5	54
92	Early onset of rainy season suppresses glacier melt: a case study on Zhadang glacier, Tibetan Plateau. Journal of Glaciology, 2009, 55, 755-758.	2.2	53
93	Gaseous and particulate pollutants in Lhasa, Tibet during 2013–2017: Spatial variability, temporal variations and implications. Environmental Pollution, 2019, 253, 68-77.	7.5	53
94	Twentieth century increase of atmospheric ammonia recorded in Mount Everest ice core. Journal of Geophysical Research, 2002, 107, ACL 13-1-ACL 13-9.	3.3	52
95	Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa. Atmospheric Research, 2015, 153, 87-97.	4.1	51
96	Polycyclic aromatic hydrocarbons in soils from the Central-Himalaya region: Distribution, sources, and risks to humans and wildlife. Science of the Total Environment, 2016, 556, 12-22.	8.0	51
97	Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics, 2018, 18, 6441-6460.	4.9	51
98	Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas. Earth-Science Reviews, 2021, 220, 103735.	9.1	50
99	Microplastic characteristic in the soil across the Tibetan Plateau. Science of the Total Environment, 2022, 828, 154518.	8.0	50
100	Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environmental Pollution, 2015, 206, 518-526.	7.5	49
101	Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing. Atmospheric Research, 2018, 200, 77-87.	4.1	49
102	Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolâ~†. Environmental Pollution, 2021, 268, 115906.	7.5	49
103	River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environmental Earth Sciences, 2015, 73, 4151-4163.	2.7	48
104	Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model. Atmospheric Research, 2016, 178-179, 484-496.	4.1	48
105	Microplastics in the Koshi River, a remote alpine river crossing the Himalayas from China to Nepal. Environmental Pollution, 2021, 290, 118121.	7.5	48
106	Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry. Atmospheric Environment, 2010, 44, 2980-2989.	4.1	47
107	Physicochemical characteristics and sources of atmospheric dust deposition in snow packs on the glaciers of western Qilian Mountains, China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 20956.	1.6	47
108	Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model. Atmospheric Research, 2016, 182, 46-53.	4.1	47

LEKHENDRA TRIPATHEE

#	Article	IF	CITATIONS
109	Emission Measurements from Traditional Biomass Cookstoves in South Asia and Tibet. Environmental Science & Technology, 2019, 53, 3306-3314.	10.0	47
110	Provenance of cryoconite deposited on the glaciers of the Tibetan Plateau: New insights from Nd‧r isotopic composition and size distribution. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7371-7382.	3.3	46
111	A 108.83-m Ice-Core Record of Atmospheric Dust Deposition at Mt. Qomolangma (Everest), Central Himalaya. Quaternary Research, 2010, 73, 33-38.	1.7	45
112	Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environmental Earth Sciences, 2014, 71, 4143-4148.	2.7	45
113	Large Variation of Mercury Isotope Composition During a Single Precipitation Event at Lhasa City, Tibetan Plateau, China. Procedia Earth and Planetary Science, 2015, 13, 282-286.	0.6	45
114	Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau. Environmental Pollution, 2020, 257, 113616.	7.5	45
115	Clacier variations in the Naimona'nyi region, western Himalaya, in the last three decades. Annals of Glaciology, 2006, 43, 385-389.	1.4	44
116	Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau. Atmospheric Environment, 2012, 46, 140-146.	4.1	44
117	Atmospheric Aerosol Elements over the Inland Tibetan Plateau: Concentration, Seasonality, and Transport. Aerosol and Air Quality Research, 2016, 16, 789-800.	2.1	44
118	Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Regions Science and Technology, 2016, 126, 36-43.	3.5	44
119	Identification of absorbing aerosol types at a site in the northern edge of Indo-Gangetic Plain and a polluted valley in the foothills of the central Himalayas. Atmospheric Research, 2019, 223, 15-23.	4.1	44
120	Major Ion Geochemistry of Nam Co Lake and its Sources, Tibetan Plateau. Aquatic Geochemistry, 2008, 14, 321-336.	1.3	43
121	Suppression of precipitation by dust particles originated in the Tibetan Plateau. Atmospheric Environment, 2009, 43, 568-574.	4.1	43
122	Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet. Atmospheric Research, 2010, 96, 553-559.	4.1	43
123	Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya, Nepal. Environmental Earth Sciences, 2016, 75, 1.	2.7	43
124	Water chemistry of the southern Tibetan Plateau: an assessment of the Yarlung Tsangpo river basin. Environmental Earth Sciences, 2017, 76, 1.	2.7	43
125	Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data. Journal of Hydrology, 2015, 530, 273-280.	5.4	42
	Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site (Nam Co,) Tj ETQq0	0 0 rgBT /C	Overlock 10 T

126

#	Article	IF	CITATIONS
127	Carbonaceous matter in the atmosphere and glaciers of the Himalayas and the Tibetan plateau: An investigative review. Environment International, 2021, 146, 106281.	10.0	42
128	Assessment of water quality and health risks for toxic trace elements in urban Phewa and remote Gosainkunda lakes, Nepal. Human and Ecological Risk Assessment (HERA), 2017, 23, 959-973.	3.4	41
129	Deposition and light absorption characteristics of precipitation dissolved organic carbon (DOC) at three remote stations in the Himalayas and Tibetan Plateau, China. Science of the Total Environment, 2017, 605-606, 1039-1046.	8.0	41
130	Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources. Atmospheric Chemistry and Physics, 2019, 19, 2725-2747.	4.9	41
131	Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading. Atmospheric Chemistry and Physics, 2017, 17, 449-463.	4.9	40
132	New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications. Environmental Science and Pollution Research, 2015, 22, 2735-2744.	5.3	39
133	Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia. Science of the Total Environment, 2017, 579, 1240-1248.	8.0	39
134	Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties. Science of the Total Environment, 2019, 647, 1385-1397.	8.0	39
135	Historical Black Carbon Reconstruction from the Lake Sediments of the Himalayan–Tibetan Plateau. Environmental Science & Technology, 2019, 53, 5641-5651.	10.0	39
136	Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Science of the Total Environment, 2019, 655, 1207-1217.	8.0	39
137	Measurement of mercury, other trace elements and major ions in wet deposition at Jomsom: The semi-arid mountain valley of the Central Himalaya. Atmospheric Research, 2020, 234, 104691.	4.1	39
138	Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Science of the Total Environment, 2017, 607-608, 1237-1249.	8.0	38
139	Revisiting the Relationship between Observed Warming and Surface Pressure in the Tibetan Plateau. Journal of Climate, 2017, 30, 1721-1737.	3.2	38
140	Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition. Atmospheric Chemistry and Physics, 2017, 17, 11899-11912.	4.9	38
141	Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China. Environmental Pollution, 2021, 268, 115907.	7.5	38
142	Transport of semivolatile organic compounds to the Tibetan Plateau: Monthly resolved air concentrations at Nam Co. Journal of Geophysical Research, 2010, 115, .	3.3	37
143	Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau. Environmental Science and Pollution Research, 2017, 24, 15369-15378.	5.3	37
144	Aerosol Properties Over Tibetan Plateau From a Decade of AERONET Measurements: Baseline, Types, and Influencing Factors. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13357-13374.	3.3	37

#	Article	IF	CITATIONS
145	Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia. Science of the Total Environment, 2020, 740, 140056.	8.0	37
146	Water chemistry of the headwaters of the Yangtze River. Environmental Earth Sciences, 2015, 74, 6443-6458.	2.7	36
147	Water-Soluble Ionic Composition of Aerosols at Urban Location in the Foothills of Himalaya, Pokhara Valley, Nepal. Atmosphere, 2016, 7, 102.	2.3	36
148	Water isotopes and hydrograph separation in different glacial catchments in the southeast margin of the <scp>Tibetan Plateau</scp> . Hydrological Processes, 2017, 31, 3810-3826.	2.6	36
149	Importance of Mountain Glaciers as a Source of Dissolved Organic Carbon. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2123-2134.	2.8	36
150	Wet deposition of precipitation chemistry during 2005–2009 at a remote site (Nam Co Station) in central Tibetan Plateau. Journal of Atmospheric Chemistry, 2012, 69, 187-200.	3.2	35
151	Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmospheric Environment, 2014, 96, 27-36.	4.1	35
152	Historical Records of Mercury Stable Isotopes in Sediments of Tibetan Lakes. Scientific Reports, 2016, 6, 23332.	3.3	35
153	Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong, southeastern Tibetan Plateau. Atmospheric Research, 2017, 197, 474-484.	4.1	35
154	Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 2020, 708, 135127.	8.0	35
155	Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: A 5-year study. Environmental Pollution, 2020, 261, 114239.	7.5	35
156	Dust storm activity over the Tibetan Plateau recorded by a shallow ice core from the north slope of Mt. Qomolangma (Everest), Tibetâ€Himal region. Geophysical Research Letters, 2007, 34, .	4.0	34
157	Rare earth elements in an ice core from Mt. Everest: Seasonal variations and potential sources. Atmospheric Research, 2009, 94, 300-312.	4.1	34
158	Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Science of the Total Environment, 2012, 429, 223-230.	8.0	34
159	Atmospheric particulate mercury in Lhasa city, Tibetan Plateau. Atmospheric Environment, 2016, 142, 433-441.	4.1	34
160	Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China. Journal of Environmental Sciences, 2016, 44, 213-223.	6.1	34
161	In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates. Science of the Total Environment, 2017, 581-582, 848-856.	8.0	34
162	The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environmental Pollution, 2017, 220, 936-945.	7.5	34

#	Article	IF	CITATIONS
163	Fossil Fuel Combustion Emission From South Asia Influences Precipitation Dissolved Organic Carbon Reaching the Remote Tibetan Plateau: Isotopic and Molecular Evidence. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6248-6258.	3.3	34
164	First results on bathymetry and limnology of high-altitude lakes in the Gokyo Valley, Sagarmatha (Everest) National Park, Nepal. Limnology, 2012, 13, 181-192.	1.5	33
165	Mercury and Selected Trace Elements from a Remote (Gosainkunda) and an Urban (Phewa) Lake Waters of Nepal. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	33
166	Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmospheric Research, 2016, 174-175, 142-150.	4.1	33
167	Composition and sources of polycyclic aromatic hydrocarbons in cryoconites of the Tibetan Plateau glaciers. Science of the Total Environment, 2017, 574, 991-999.	8.0	33
168	Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China. Environmental Science and Pollution Research, 2012, 19, 1620-1628.	5.3	32
169	Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. Environmental Pollution, 2019, 247, 216-228.	7.5	32
170	Black carbon concentration in the central Himalayas: Impact on glacier melt and potential source contribution. Environmental Pollution, 2021, 275, 116544.	7.5	32
171	Temperature and methane records over the last 2 ka in Dasuopu ice core. Science in China Series D: Earth Sciences, 2002, 45, 1068-1074.	0.9	31
172	Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Science Bulletin, 2010, 55, 2697-2703.	1.7	31
173	Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau. Atmospheric Environment, 2016, 141, 203-208.	4.1	31
174	Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo. Atmospheric Chemistry and Physics, 2018, 18, 4981-5000.	4.9	31
175	Observation of optical properties and sources of aerosols at Buddha's birthplace, Lumbini, Nepal: environmental implications. Environmental Science and Pollution Research, 2018, 25, 14868-14881.	5.3	31
176	Air Pollution in the Hindu Kush Himalaya. , 2019, , 339-387.		31
177	Seasonal features of aerosol particles recorded in snow from Mt. Qomolangma (Everest) and their environmental implications. Journal of Environmental Sciences, 2009, 21, 914-919.	6.1	30
178	Changes in precipitating snow chemistry with seasonality in the remote Laohugou glacier basin, western Qilian Mountains. Environmental Science and Pollution Research, 2017, 24, 11404-11414.	5.3	30
179	Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: Concentrations, radiative forcing and potential source from local topsoil. Science of the Total Environment, 2019, 686, 1030-1038.	8.0	30
180	Elemental composition of aerosols collected in the glacier area on Nyainqêntanglha Range, Tibetan Plateau, during summer monsoon season. Science Bulletin, 2007, 52, 3436-3442.	1.7	29

#	Article	IF	CITATIONS
181	A 500year atmospheric dust deposition retrieved from a Mt. Geladaindong ice core in the central Tibetan Plateau. Atmospheric Research, 2015, 166, 1-9.	4.1	29
182	Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. PLoS ONE, 2017, 12, e0178166.	2.5	29
183	Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 4617-4638.	4.9	29
184	Deposition of Organic and Black Carbon: Direct Measurements at Three Remote Stations in the Himalayas and Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9702-9715.	3.3	29
185	Linking the conventional and emerging detection techniques for ambient bioaerosols: a review. Reviews in Environmental Science and Biotechnology, 2019, 18, 495-523.	8.1	29
186	Chemical composition of fresh snow on Xixabangma peak, central Himalaya, during the summer monsoon season. Journal of Glaciology, 2002, 48, 337-339.	2.2	28
187	Annual Accumulation in the Mt. Nyainqentanglha Ice Core, Southern Tibetan Plateau, China: Relationships To Atmospheric Circulation over Asia. Arctic, Antarctic, and Alpine Research, 2007, 39, 663-670.	1.1	28
188	Physicochemical impacts of dust particles on alpine glacier meltwater at the Laohugou Glacier basin in western Qilian Mountains, China. Science of the Total Environment, 2014, 493, 930-942.	8.0	28
189	Concentration, sources, and flux of dissolved organic carbon of precipitation at Lhasa city, the Tibetan Plateau. Environmental Science and Pollution Research, 2016, 23, 12915-12921.	5.3	28
190	Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. Journal of Hydrology, 2016, 541, 1104-1118.	5.4	27
191	Water-soluble elements in snow and ice on Mt. Yulong. Science of the Total Environment, 2017, 574, 889-900.	8.0	27
192	Nitrogen Speciation and Isotopic Composition of Aerosols Collected at Himalayan Forest (3326 m) Tj ETQq0 0 0 12247-12256.	rgBT /Ove 10.0	rlock 10 Tf 5 27
193	New insights into heavy metal elements deposition in the snowpacks of mountain glaciers in the eastern Tibetan Plateau. Ecotoxicology and Environmental Safety, 2021, 207, 111228.	6.0	27
194	Lead isotopic composition of insoluble particles from widespread mountain glaciers in western China: Natural vs. anthropogenic sources. Atmospheric Environment, 2013, 75, 224-232.	4.1	26
195	Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: Insights into chemical composition and sources. Atmospheric Environment, 2016, 138, 114-124.	4.1	26
196	Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau. Environmental Pollution, 2017, 227, 243-251.	7.5	26
197	Variability in individual particle structure and mixing states between the glacier–snowpack and atmosphere in the northeastern Tibetan Plateau. Cryosphere, 2018, 12, 3877-3890.	3.9	26
198	Riverine dissolved organic carbon and its optical properties in a permafrost region of the Upper Heihe River basin in the Northern Tibetan Plateau. Science of the Total Environment, 2019, 686, 370-381.	8.0	26

#	Article	IF	CITATIONS
199	Characterization of mercury concentration from soils to needle and tree rings of Schrenk spruce (Picea schrenkiana) of the middle Tianshan Mountains, northwestern China. Ecological Indicators, 2019, 104, 24-31.	6.3	26
200	Investigating air pollutant concentrations, impact factors, and emission control strategies in western China by using a regional climate-chemistry model. Chemosphere, 2020, 246, 125767.	8.2	26
201	Storage of dissolved organic carbon in Chinese glaciers. Journal of Glaciology, 2016, 62, 402-406.	2.2	25
202	Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain. Climate Dynamics, 2017, 48, 2901-2917.	3.8	25
203	Sensitivity Analysis of Chemical Mechanisms in the WRF-Chem Model in Reconstructing Aerosol Concentrations and Optical Properties in the Tibetan Plateau. Aerosol and Air Quality Research, 2018, 18, 505-521.	2.1	25
204	Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication. Atmospheric Chemistry and Physics, 2020, 20, 5923-5943.	4.9	25
205	Black carbon and organic carbon dataset over the Third Pole. Earth System Science Data, 2022, 14, 683-707.	9.9	25
206	Organochlorine pesticides in fresh-fallen snow on East Rongbuk Glacier of Mt. Qomolangma (Everest). Science in China Series D: Earth Sciences, 2007, 50, 1097-1102.	0.9	24
207	Variations of the Physicochemical Parameters and Metal Levels and Their Risk Assessment in Urbanized Bagmati River, Kathmandu, Nepal. Journal of Chemistry, 2016, 2016, 1-13.	1.9	24
208	Melting glaciers: Hidden hazards. Science, 2017, 356, 495-495.	12.6	24
209	Atmospheric deposition and contamination of trace elements in snowpacks of mountain glaciers in the northeastern Tibetan Plateau. Science of the Total Environment, 2019, 689, 754-764.	8.0	24
210	Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau. Environmental Pollution, 2020, 257, 113541.	7.5	24
211	Accelerating permafrost collapse on the eastern Tibetan Plateau. Environmental Research Letters, 2021, 16, 054023.	5.2	24
212	Long-range transport of atmospheric microplastics deposited onto glacier in southeast Tibetan Plateau. Environmental Pollution, 2022, 306, 119415.	7.5	24
213	Dissolved organic carbon fractionation accelerates glacier-melting: A case study in the northern Tibetan Plateau. Science of the Total Environment, 2018, 627, 579-585.	8.0	23
214	First measurement of atmospheric mercury species in Qomolangma Natural Nature Preserve, Tibetan Plateau, and evidence oftransboundary pollutant invasion. Atmospheric Chemistry and Physics, 2019, 19, 1373-1391.	4.9	23
215	Accumulation of Atmospheric Mercury in Glacier Cryoconite over Western China. Environmental Science & Technology, 2019, 53, 6632-6639.	10.0	23
216	Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau. Environmental Pollution, 2020, 256, 113432.	7.5	23

#	Article	IF	CITATIONS
217	Potential Effect of Black Carbon on Glacier Mass Balance during the Past 55 Years of Laohugou Glacier No. 12, Western Qilian Mountains. Journal of Earth Science (Wuhan, China), 2020, 31, 410-418.	3.2	23
218	Seasonal Variation of Mercury and Its Isotopes in Atmospheric Particles at the Coastal Zhongshan Station, Eastern Antarctica. Environmental Science & amp; Technology, 2020, 54, 11344-11355.	10.0	23
219	Sources and spatio-temporal distribution of aerosol polycyclic aromatic hydrocarbons throughout the Tibetan Plateau. Environmental Pollution, 2020, 261, 114144.	7.5	23
220	Major ions and irrigation water quality assessment of the Nepalese Himalayan rivers. Environment, Development and Sustainability, 2021, 23, 2668-2680.	5.0	23
221	Characteristics of Particulate-Phase Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere over the Central Himalayas. Aerosol and Air Quality Research, 2017, 17, 2942-2954.	2.1	23
222	Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. Science of the Total Environment, 2017, 599-600, 2046-2053.	8.0	22
223	Importance of Local Black Carbon Emissions to the Fate of Claciers of the Third Pole. Environmental Science & Technology, 2018, 52, 14027-14028.	10.0	22
224	Spatial variability, mixing states and composition of various haze particles in atmosphere during winter and summertime in northwest China. Environmental Pollution, 2019, 246, 79-88.	7.5	22
225	Source Apportionment and Risk Assessment of Atmospheric Polycyclic Aromatic Hydrocarbons in Lhasa, Tibet, China. Aerosol and Air Quality Research, 2018, 18, 1294-1304.	2.1	22
226	Characteristics of Atmospheric Particle-bound Polycyclic Aromatic Compounds over the Himalayan Middle Hills: Implications for Sources and Health Risk Assessment. Asian Journal of Atmospheric Environment, 2021, 15, 1-19.	1.1	22
227	Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet. Science of the Total Environment, 2016, 566-567, 1215-1222.	8.0	21
228	Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau. Journal of Environmental Sciences, 2017, 52, 18-28.	6.1	21
229	Hydrochemistry of Lake Rara: A high mountain lake in western Nepal. Lakes and Reservoirs: Research and Management, 2018, 23, 87-97.	0.9	21
230	Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia. Science of the Total Environment, 2020, 725, 138346.	8.0	21
231	Columnar aerosol properties and radiative effects over Dushanbe, Tajikistan in Central Asia. Environmental Pollution, 2020, 265, 114872.	7.5	21
232	Spatial and Temporal Variations of Gaseous and Particulate Pollutants in Six Sites in Tibet, China, during 2016–2017. Aerosol and Air Quality Research, 2019, 19, 516-527.	2.1	21
233	Warming and thawing in the Mt. Everest region: A review of climate and environmental changes. Earth-Science Reviews, 2022, 225, 103911.	9.1	21
234	Characteristics of spatial and temporal variations of monthly mean surface air temperature over Qinghai-Tibet Plateau. Chinese Geographical Science, 2006, 16, 351-358.	3.0	20

#	Article	IF	CITATIONS
235	Low-molecular-weight organic acids in the Tibetan Plateau: Results from one-year of precipitation samples at the SET station. Atmospheric Environment, 2014, 86, 68-73.	4.1	20
236	Vanishing High Mountain Glacial Archives: Challenges and Perspectives. Environmental Science & Technology, 2015, 49, 9499-9500.	10.0	20
237	Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environmental Science and Pollution Research, 2015, 22, 12490-12500.	5.3	20
238	Distribution and variation of mercury in frozen soils of a high-altitude permafrost region on the northeastern margin of the Tibetan Plateau. Environmental Science and Pollution Research, 2017, 24, 15078-15088.	5.3	20
239	Export of dissolved carbonaceous and nitrogenous substances in rivers of the "Water Tower of Asia― Journal of Environmental Sciences, 2018, 65, 53-61.	6.1	20
240	Atmospheric sulfur isotopic anomalies recorded at Mt. Everest across the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6964-6969.	7.1	20
241	Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan. Journal of Environmental Sciences, 2020, 90, 286-296.	6.1	20
242	The vertical profiles of carbonaceous aerosols and key influencing factors during wintertime over western Sichuan Basin, China. Atmospheric Environment, 2020, 223, 117269.	4.1	20
243	Modeling hydrological process in a glacier basin on the central Tibetan Plateau with a distributed hydrology soil vegetation model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9521-9539.	3.3	19
244	Temporal and diurnal analysis of trace elements in the Cryospheric water at remote Laohugou basin in northeast Tibetan Plateau. Chemosphere, 2017, 171, 386-398.	8.2	19
245	Dissolved organic carbon in summer precipitation and its wet deposition flux in the Mt. Yulong region, southeastern Tibetan Plateau. Journal of Atmospheric Chemistry, 2019, 76, 1-20.	3.2	19
246	Decoupling Natural and Anthropogenic Mercury and Lead Transport from South Asia to the Himalayas. Environmental Science & Technology, 2020, 54, 5429-5436.	10.0	19
247	Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau. Environmental Pollution, 2021, 272, 116000.	7.5	19
248	Climatic significance of δ 18O records from an 80.36 m ice core in the East Rongbuk Glacier, Mount Qomolangma (Everest). Science in China Series D: Earth Sciences, 2005, 48, 266-272.	0.9	18
249	Geochemical evidence on the source regions of Tibetan Plateau dusts during non-monsoon period in 2008/09. Atmospheric Environment, 2012, 59, 382-388.	4.1	18
250	Effects of clouds on surface melting of Laohugou glacier No. 12, western Qilian Mountains, China. Journal of Glaciology, 2018, 64, 89-99.	2.2	18
251	Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications. Cryosphere, 2018, 12, 3177-3186.	3.9	18
252	Critical contribution of south Asian residential emissions to atmospheric black carbon over the Tibetan plateau. Science of the Total Environment, 2020, 709, 135923.	8.0	18

#	Article	IF	CITATIONS
253	Vegetation Mediated Mercury Flux and Atmospheric Mercury in the Alpine Permafrost Region of the Central Tibetan Plateau. Environmental Science & Technology, 2020, 54, 6043-6052.	10.0	18
254	Mercury biogeochemistry over the Tibetan Plateau: An overview. Critical Reviews in Environmental Science and Technology, 2021, 51, 577-602.	12.8	18
255	Water-soluble organic and inorganic nitrogen in ambient aerosols over the Himalayan middle hills: Seasonality, sources, and transport pathways. Atmospheric Research, 2021, 250, 105376.	4.1	18
256	Contribution of South Asian biomass burning to black carbon over the Tibetan Plateau and its climatic impact. Environmental Pollution, 2021, 270, 116195.	7.5	18
257	Source identification of atmospheric particle-bound mercury in the Himalayan foothills through non-isotopic and isotope analyses. Environmental Pollution, 2021, 286, 117317.	7.5	18
258	Elemental composition in surface snow from the ultra-high elevation area of Mt. Qomolangma (Everest). Science Bulletin, 2008, 53, 289-294.	1.7	17
259	Spatial and temporal variations of total mercury in Antarctic snow along the transect from Zhongshan Station to Dome A. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 25152.	1.6	17
260	Identification of sources of polycyclic aromatic hydrocarbons based on concentrations in soils from two sides of the Himalayas between China and Nepal. Environmental Pollution, 2016, 212, 424-432.	7.5	17
261	Potentially Toxic Trace Metals in Water and Lake-Bed Sediment of Panchpokhari, an Alpine Lake Series in the Central Himalayan Region of Nepal. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	17
262	Seasonal controls of meltwater runoff chemistry and chemical weathering at Urumqi Glacier No.1 in central Asia. Hydrological Processes, 2019, 33, 3258-3281.	2.6	17
263	A new isolation method for biomass-burning tracers in snow: Measurements of p -hydroxybenzoic, vanillic, and dehydroabietic acids. Atmospheric Environment, 2015, 122, 142-147.	4.1	16
264	Chemical compositions of snow from Mt. Yulong, southeastern Tibetan Plateau. Journal of Earth System Science, 2016, 125, 403-416.	1.3	16
265	Deposition of atmospheric pollutant and their chemical characterization in snow pit profile at Dokriani Glacier, Central Himalaya. Journal of Mountain Science, 2018, 15, 2236-2246.	2.0	16
266	Vital contribution of residential emissions to atmospheric fine particles (PM2.5) during the severe wintertime pollution episodes in Western China. Environmental Pollution, 2019, 245, 519-530.	7.5	16
267	Concentration and risk assessments of mercury along the elevation gradient in soils of Langtang Himalayas, Nepal. Human and Ecological Risk Assessment (HERA), 2019, 25, 1006-1017.	3.4	16
268	Assessment of elemental distribution and trace element contamination in surficial wetland sediments, Southern Tibetan Plateau. Environmental Monitoring and Assessment, 2011, 177, 301-313.	2.7	15
269	Light-absorbing impurities in snow cover across Northern Xinjiang, China. Journal of Glaciology, 2019, 65, 940-956.	2.2	15
270	Cryoconite on a glacier on the north-eastern Tibetan plateau: light-absorbing impurities, albedo and enhanced melting. Journal of Glaciology, 2019, 65, 633-644.	2.2	15

#	Article	IF	CITATIONS
271	Biomass burning source identification through molecular markers in cryoconites over the Tibetan Plateau. Environmental Pollution, 2019, 244, 209-217.	7.5	15
272	Heavy near-surface PM2.5 pollution in Lhasa, China during a relatively static winter period. Chemosphere, 2019, 214, 314-318.	8.2	15
273	Observing and Modeling the Isotopic Evolution of Snow Meltwater on the Southeastern Tibetan Plateau. Water Resources Research, 2020, 56, e2019WR026423.	4.2	15
274	Severe air pollution and characteristics of light-absorbing particles in a typical rural area of the Indo-Gangetic Plain. Environmental Science and Pollution Research, 2020, 27, 10617-10628.	5.3	15
275	Relative contribution of mineral dust versus black carbon to Third Pole glacier melting. Atmospheric Environment, 2020, 223, 117288.	4.1	15
276	Desert dust as a significant carrier of atmospheric mercury. Environmental Pollution, 2020, 267, 115442.	7.5	15
277	Comparison of two ice-core chemical records recovered from the Qomolangma (Mount Everest) region, Himalaya. Annals of Glaciology, 2002, 35, 266-272.	1.4	14
278	Influence of microtopography on active layer thaw depths in Qilian Mountain, northeastern Tibetan Plateau. Environmental Earth Sciences, 2016, 75, 1.	2.7	14
279	Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau. Journal of Environmental Sciences, 2018, 68, 130-142.	6.1	14
280	Hf-Nd-Sr isotopic fingerprinting for aeolian dust deposited on glaciers in the northeastern Tibetan Plateau region. Global and Planetary Change, 2019, 177, 69-80.	3.5	14
281	Bacterial Diversity and Communities Structural Dynamics in Soil and Meltwater Runoff at the Frontier of Baishui Glacier No.1, China. Microbial Ecology, 2021, 81, 370-384.	2.8	14
282	Black carbon and dust in the Third Pole glaciers: Revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation. Science of the Total Environment, 2021, 789, 147746.	8.0	14
283	Atmospheric particle-bound polycyclic aromatic compounds over two distinct sites in Pakistan: Characteristics, sources and health risk assessment. Journal of Environmental Sciences, 2022, 112, 1-15.	6.1	14
284	Chromophoric dissolved organic carbon cycle and its molecular compositions and optical properties in precipitation in the Guanzhong basin, China. Science of the Total Environment, 2022, 814, 152775.	8.0	14
285	The Risk of Mercury Exposure to the People Consuming Fish from Lake Phewa, Nepal. International Journal of Environmental Research and Public Health, 2014, 11, 6771-6779.	2.6	13
286	Modeling Glacier Mass Balance and Runoff in the Koxkar River Basin on the South Slope of the Tianshan Mountains, China, from 1959 to 2009. Water (Switzerland), 2017, 9, 100.	2.7	13
287	Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau. Science of the Total Environment, 2018, 631-632, 270-278.	8.0	13
288	Distributions and light absorption property of water soluble organic carbon in a typical temperate glacier, southeastern Tibetan Plateau. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1468705.	1.6	13

#	Article	IF	CITATIONS
289	Characteristics of carbonaceous aerosols analyzed using a multiwavelength thermal/optical carbon analyzer: A case study in Lanzhou City. Science China Earth Sciences, 2019, 62, 389-402.	5.2	13
290	Quantifying the contributions of various emission sources to black carbon and assessment of control strategies in western China. Atmospheric Research, 2019, 215, 178-192.	4.1	13
291	Black carbon in surface soil of the Himalayas and Tibetan Plateau and its contribution to total black carbon deposition at glacial region. Environmental Science and Pollution Research, 2020, 27, 2670-2676.	5.3	13
292	Microbial mercury methylation profile in terminus of a high-elevation glacier on the northern boundary of the Tibetan Plateau. Science of the Total Environment, 2020, 708, 135226.	8.0	13
293	Dissolved organic carbon in Alaskan Arctic snow: concentrations, light-absorption properties, and bioavailability. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1778968.	1.6	13
294	Black carbon and mineral dust on two glaciers on the central Tibetan Plateau: sources and implications. Journal of Glaciology, 2020, 66, 248-258.	2.2	13
295	Sink or source? Methane and carbon dioxide emissions from cryoconite holes, subglacial sediments, and proglacial river runoff during intensive glacier melting on the Tibetan Plateau. Fundamental Research, 2021, 1, 232-239.	3.3	13
296	Mercury Concentrations in Commercial Fish Species of Lake Phewa, Nepal. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 272-277.	2.7	12
297	A hybrid method for PM2.5 source apportionment through WRF-Chem simulations and an assessment of emission-reduction measures in western China. Atmospheric Research, 2020, 236, 104787.	4.1	12
298	Investigation of the spatio-temporal heterogeneity and optical property of water-soluble organic carbon in atmospheric aerosol and snow over the Yulong Snow Mountain, southeastern Tibetan Plateau. Environment International, 2020, 144, 106045.	10.0	12
299	Recycled moisture in an enclosed basin, Guanzhong Basin of Northern China, in the summer: Contribution to precipitation based on a stable isotope approach. Environmental Science and Pollution Research, 2020, 27, 27926-27936.	5.3	12
300	Mercury variation and export in trans-Himalayan rivers: Insights from field observations in the Koshi River. Science of the Total Environment, 2020, 738, 139836.	8.0	12
301	Two heavy haze events over Lumbini in southern Nepal: Enhanced aerosol radiative forcing and heating rates. Atmospheric Environment, 2020, 236, 117658.	4.1	12
302	Black carbon and mercury in the surface sediments of Selin Co, central Tibetan Plateau: Covariation with total carbon. Science of the Total Environment, 2020, 721, 137752.	8.0	12
303	Concentration, sources and wet deposition of dissolved nitrogen and organic carbon in the Northern Indo-Gangetic Plain during monsoon. Journal of Environmental Sciences, 2021, 102, 37-52.	6.1	12
304	Study on Mercury in PM10 at an Urban Site in the Central Indo-Gangetic Plain: Seasonal Variability and Influencing Factors. Aerosol and Air Quality Research, 2020, 20, 2729-2740.	2.1	12
305	Chemical Records in Snowpits from High Altitude Glaciers in the Tibetan Plateau and Its Surroundings. PLoS ONE, 2016, 11, e0155232.	2.5	11
306	Vertical distribution of the Asian tropopause aerosols detected by CALIPSO. Environmental Pollution, 2019, 253, 207-220.	7.5	11

#	Article	IF	CITATIONS
307	Precipitation chemistry and stable isotopic characteristics at Wengguo in the northern slopes of the Himalayas. Journal of Atmospheric Chemistry, 2019, 76, 289-313.	3.2	11
308	Carbonaceous matter in glacier at the headwaters of the Yangtze River: Concentration, sources and fractionation during the melting process. Journal of Environmental Sciences, 2020, 87, 389-397.	6.1	11
309	Investigation of variations, causes and component distributions of PM2.5 mass in China using a coupled regional climate-chemistry model. Atmospheric Pollution Research, 2020, 11, 319-331.	3.8	11
310	High particulate carbon deposition in Lhasa—a typical city in the Himalayan–Tibetan Plateau due to local contributions. Chemosphere, 2020, 247, 125843.	8.2	11
311	Can summer monsoon moisture invade the Jade Pass in Northwestern China?. Climate Dynamics, 2020, 55, 3101-3115.	3.8	11
312	Airborne bacterial communities over the Tibetan and Mongolian Plateaus: variations and their possible sources. Atmospheric Research, 2021, 247, 105215.	4.1	11
313	Atmospheric wet deposition of major ionic constituents and inorganic nitrogen in Bangladesh: Implications for spatiotemporal variation and source apportionment. Atmospheric Research, 2021, 250, 105414.	4.1	11
314	Vertical profile of aerosols in the Himalayas revealed by lidar: New insights into their seasonal/diurnal patterns, sources, and transport. Environmental Pollution, 2021, 285, 117686.	7.5	11
315	Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. Environmental Research Letters, 2022, 17, 044068.	5.2	11
316	Summer monsoon and dust signals recorded in the Dasuopu firn core, central Himalayas. Science Bulletin, 1999, 44, 2010-2015.	1.7	10
317	Dissolved organic carbon in glaciers of the southeastern Tibetan Plateau: Insights into concentrations and possible sources. PLoS ONE, 2018, 13, e0205414.	2.5	10
318	Autotrophic microbial community succession from glacier terminus to downstream waters on the Tibetan Plateau. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
319	Contrasting environmental factors drive bacterial and eukaryotic community successions in freshly deglaciated soils. FEMS Microbiology Letters, 2019, 366, .	1.8	10
320	Characteristics of Dissolved Organic Matter from a Transboundary Himalayan Watershed: Relationships with Land Use, Elevation, and Hydrology. ACS Earth and Space Chemistry, 2020, 4, 449-456.	2.7	10
321	Continuously observed light absorbing impurities in snow cover over the southern Altai Mts. in China: Concentrations, impacts and potential sources. Environmental Pollution, 2021, 270, 116234.	7.5	10
322	Influence of South Asian Biomass Burning on Ozone and Aerosol Concentrations Over the Tibetan Plateau. Advances in Atmospheric Sciences, 2022, 39, 1184-1197.	4.3	10
323	Molecular compositions, optical properties, and implications of dissolved brown carbon in snow/ice on the Tibetan Plateau glaciers. Environment International, 2022, 164, 107276.	10.0	10
324	Records of anthropogenic antimony in the glacial snow from the southeastern Tibetan Plateau. Journal of Asian Earth Sciences, 2016, 131, 62-71.	2.3	9

#	Article	IF	CITATIONS
325	Isotopic constraints on the formation pathways and sources of atmospheric nitrate in the Mt. Everest region. Environmental Pollution, 2020, 267, 115274.	7.5	9
326	Investigation of black carbon climate effects in the Arctic in winter and spring. Science of the Total Environment, 2021, 751, 142145.	8.0	9
327	Significant Influence of Carbonates on Determining Organic Carbon and Black Carbon: A Case Study in Tajikistan, Central Asia. Environmental Science & Technology, 2021, 55, 2839-2846.	10.0	9
328	Sources and light absorption characteristics of water-soluble organic carbon (WSOC) of atmospheric particles at a remote area in inner Himalayas and Tibetan Plateau. Atmospheric Research, 2021, 253, 105472.	4.1	9
329	Modifications in aerosol physical, optical and radiative properties during heavy aerosol events over Dushanbe, Central Asia. Geoscience Frontiers, 2021, 12, 101251.	8.4	9
330	Twentieth-century warming preserved in a Geladaindong mountain ice core, central Tibetan Plateau. Annals of Glaciology, 2016, 57, 70-80.	1.4	8
331	Concentration, spatiotemporal distribution, and sources of mercury in Mt. Yulong, a remote site in southeastern Tibetan Plateau. Environmental Science and Pollution Research, 2019, 26, 16457-16469.	5.3	8
332	New insights into trace elements in the water cycle of a karst-dominated glacierized region, southeast Tibetan Plateau. Science of the Total Environment, 2021, 751, 141725.	8.0	8
333	Atmospheric particle-bound mercury in the northern Indo-Gangetic Plain region: Insights into sources from mercury isotope analysis and influencing factors. Geoscience Frontiers, 2022, 13, 101274.	8.4	8
334	Characteristics of dissolved organic carbon and nitrogen in precipitation in the northern Tibetan Plateau. Science of the Total Environment, 2021, 776, 145911.	8.0	8
335	First observation of mercury species on an important water vapor channel in the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics, 2022, 22, 2651-2668.	4.9	8
336	Variations in annual accumulation recorded in a Laohugou ice core from the northeastern Tibetan Plateau and their relationship with atmospheric circulation. Environmental Earth Sciences, 2016, 75, 1.	2.7	7
337	Health risk assessment of atmospheric polycyclic aromatic hydrocarbons over the Central Himalayas. Human and Ecological Risk Assessment (HERA), 2018, 24, 1969-1982.	3.4	7
338	Microbial mercury methylation in the cryosphere: Progress and prospects. Science of the Total Environment, 2019, 697, 134150.	8.0	7
339	Understanding Mercury Cycling in Tibetan Glacierized Mountain Environment: Recent Progress and Remaining Gaps. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 672-678.	2.7	7
340	Measurements of light-absorbing impurities in snow over four glaciers on the Tibetan Plateau. Atmospheric Research, 2020, 243, 105002.	4.1	7
341	Melting Himalayas and mercury export: Results of continuous observations from the Rongbuk Glacier on Mt. Everest and future insights. Water Research, 2022, 218, 118474.	11.3	7
342	Evaluation of Water Storage Change of Inland Cryosphere in Northwestern China. Advances in Meteorology, 2015, 2015, 1-12.	1.6	6

#	Article	IF	CITATIONS
343	Long-term trends in the total columns of ozone and its precursor gases derived from satellite measurements during 2004–2015 over three different regions in South Asia: Indo-Gangetic Plain, Himalayas and Tibetan Plateau. International Journal of Remote Sensing, 2018, 39, 7384-7404.	2.9	6
344	Hydrochemical assessment (major ions and Hg) of meltwater in high altitude glacierized Himalayan catchment. Environmental Monitoring and Assessment, 2019, 191, 213.	2.7	6
345	A Complete Isotope (δ ¹⁵ N, δ ¹⁸ O, Δ ¹⁷ O) Investigation of Atmospherically Deposited Nitrate in Glacialâ€Hydrologic Systems Across the Third Pole Region. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031878.	3.3	6
346	Investigation of Aerosol Climatology and Long-Range Transport of Aerosols over Pokhara, Nepal. Atmosphere, 2020, 11, 874.	2.3	6
347	Impact of atmospheric circulation patterns on properties and regional transport pathways of aerosols over Central-West Asia: Emphasizing the Tibetan Plateau. Atmospheric Research, 2022, 266, 105975.	4.1	6
348	Overestimation of anthropogenic contribution of heavy metals in precipitation than those of aerosol samples due to different treatment methods. Environmental Pollution, 2022, 300, 118956.	7.5	6
349	Composition and sources of heavy metals in aerosol at a remote site of Southeast Tibetan Plateau, China. Science of the Total Environment, 2022, 845, 157308.	8.0	6
350	Feasibility comparison of reanalysis data from NCEP-I and NCEP-II in the Himalayas. Journal of Mountain Science, 2009, 6, 56-65.	2.0	5
351	Summer hydrological characteristics in glacier and non-glacier catchments in the Nam Co Basin, southern Tibetan Plateau. Environmental Earth Sciences, 2015, 74, 2019-2028.	2.7	5
352	The effect of decreasing permafrost stability on ecosystem carbon in the northeastern margin of the Qinghai–Tibet Plateau. Scientific Reports, 2018, 8, 4172.	3.3	5
353	Chemical components and distributions in glaciers of the Third Pole. , 2020, , 71-134.		5
354	Photobleaching reduces the contribution of dissolved organic carbon to glacier melting in the Himalayas and the Tibetan Plateau. Science of the Total Environment, 2021, 797, 149178.	8.0	5
355	Nitrogenous and carbonaceous aerosols in PM2.5 and TSP during pre-monsoon: Characteristics and sources in the highly polluted mountain valley. Journal of Environmental Sciences, 2022, 115, 10-24.	6.1	5
356	Contrasting changes in long-term wet mercury deposition and socioeconomic development in the largest city of Tibet. Science of the Total Environment, 2022, 804, 150124.	8.0	5
357	Mercury Concentrations in the Fish Community from Indrawati River, Nepal. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 500-505.	2.7	4
358	Natural versus anthropogenic influence on trace elemental concentration in precipitation at Dokriani Glacier, central Himalaya, India. Environmental Science and Pollution Research, 2020, 27, 3462-3472.	5.3	4
359	Microbial Community Composition Analysis in Spring Aerosols at Urban and Remote Sites over the Tibetan Plateau. Atmosphere, 2020, 11, 527.	2.3	4
360	PM1 chemical composition and light absorption properties in urban and rural areas within Sichuan Basin, southwest China. Environmental Pollution, 2021, 280, 116970.	7.5	4

#	Article	IF	CITATIONS
361	Modification and coupled use of technologies are an essential envisioned need for bioaerosol study – An emerging public health concern. Fundamental Research, 2022, , .	3.3	4
362	14C characteristics of organic carbon in the atmosphere and at glacier region of the Tibetan Plateau. Science of the Total Environment, 2022, 832, 155020.	8.0	4
363	A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers. Earth System Science Data, 2022, 14, 2303-2314.	9.9	4
364	Long-term mercury variations in tree rings of the permafrost forest, northeastern China. Science China Earth Sciences, 2022, 65, 1328-1338.	5.2	4
365	Source apportionment and elevational gradient of dissolved organic matter over the Tibetan plateau. Catena, 2022, 216, 106372.	5.0	4
366	Measurement of light-absorbing particles in surface snow of central and western Himalayan glaciers: spatial variability, radiative impacts, and potential source regions. Atmospheric Chemistry and Physics, 2022, 22, 8725-8737.	4.9	4
367	Comment on "lce Core Perspective on Mercury Pollution during the Past 600 Years― Environmental Science & Technology, 2016, 50, 1065-1067.	10.0	3
368	Black Carbon in Surface Soil and Its Sources in Three Central Asian Countries. Archives of Environmental Contamination and Toxicology, 2021, 80, 558-566.	4.1	3
369	Glacial record of trace metal pollution over the Central Himalayas and its surroundings: Distribution, variation, and anthropogenic signals. Atmospheric Research, 2021, 251, 105428.	4.1	3
370	Increasing cloud water resource in a warming world. Environmental Research Letters, 2021, 16, 124067.	5.2	3
371	Transport of black carbon from Central and West Asia to the Tibetan Plateau: Seasonality and climate effect. Atmospheric Research, 2022, 267, 105987.	4.1	3
372	Nutrients and organic carbons in lake waters of the Third Pole. , 2020, , 261-285.		2
373	Magnetic characteristics of lake sediments in Qiangyong Co Lake, southern Tibetan Plateau and their application to the evaluation of mercury deposition. Journal of Chinese Geography, 2020, 30, 1481-1494.	3.9	2
374	Observational Study of Ground-Level Ozone in the Desert Atmosphere. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 219-224.	2.7	2
375	Seasonal taxonomic composition of microbial communal shaping the bioaerosols milieu of the urban city of Lanzhou. Archives of Microbiology, 2022, 204, 222.	2.2	2
376	Organic aerosol compositions and source estimation by molecular tracers in Dushanbe, Tajikistan. Environmental Pollution, 2022, 302, 119055.	7.5	2
377	Soot biodegradation by psychrotolerant bacterial consortia. Biodegradation, 2022, 33, 407-418.	3.0	2
378	Chemical components and distributions in precipitation in the Third Pole. , 2020, , 3-41.		1

#	Article	IF	CITATIONS
379	Nutrients and organic carbons in river waters of the Third Pole. , 2020, , 179-209.		1
380	Spatial distribution and potential sources of methanesulfonic acid in High Asia glaciers. Atmospheric Research, 2021, 248, 105227.	4.1	1
381	Transport Mechanisms, Potential Sources, and Radiative Impacts of Black Carbon Aerosols on the Himalayas and Tibetan Plateau Claciers. Springer Atmospheric Sciences, 2021, , 7-23.	0.3	1
382	Mercury sources and physicochemical characteristics in ice, snow, and meltwater of the Laohugou Glacier Basin, China. Environmental Science and Pollution Research, 2021, 28, 51530-51543.	5.3	1
383	STUDY OF AEROSOL OPTICAL PROPERTIES OVER TWO SITES IN THE FOOTHILLS OF THE CENTRAL HIMALAYAS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 1493-1497.	0.2	1
384	Bioaccumulation of mercury in fishes of Jagadishpur Reservoir, Nepal. Nepal Journal of Environmental Science, 0, 7, 17-23.	0.3	1
385	Atmospheric Pollutants and Its Transport Mechanisms in Soil Along the Himalayas, Tibetan Plateau, and Its Surroundings: A Brief Note. Soil Biology, 2017, , 9-19.	0.8	0
386	Inorganic components in lake waters in the Third Pole. , 2020, , 239-259.		0
387	Isotopic Evolution in Snowpacks from a Typical Temperate Glacier in the South-Asia Monsoon Region. Water (Switzerland), 2020, 12, 3402.	2.7	0
388	Covid-19 Outbreak on The Rise - Anticipating Treatment Strategy. Acta Scientific Microbiology, 2020, 3, 28-33.	0.1	0
389	Natural Versus Anthropogenic Influence on Trace Elemental Concentrations in Precipitation at Dokriani Clacier, Central Himalaya, India. , 2020, ,		0
390	Organic Molecular Tracers in South Asian Atmospheric Aerosols at Distinct Locations. SSRN Electronic Journal, 0, , .	0.4	0