
Arjen ten Have

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579350/publications.pdf Version: 2024-02-01

Δριένι τενι Ηλιγέ

#	Article	IF	CITATIONS
1	Functional Classification and Characterization of the Fungal Glycoside Hydrolase 28 Protein Family. Journal of Fungi (Basel, Switzerland), 2022, 8, 217.	3.5	6
2	Structure-function analysis of Sedolisins: evolution of tripeptidyl peptidase and endopeptidase subfamilies in fungi. BMC Bioinformatics, 2018, 19, 464.	2.6	2
3	Molecular dynamics and structure function analysis show that substrate binding and specificity are major forces in the functional diversification of Eqolisins. BMC Bioinformatics, 2018, 19, 338.	2.6	3
4	HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold. PLoS ONE, 2018, 13, e0193757.	2.5	16
5	Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chemistry, 2017, 229, 837-846.	8.2	57
6	Computational Functional Analysis of Lipid Metabolic Enzymes. Methods in Molecular Biology, 2017, 1609, 195-216.	0.9	2
7	Evolutionary and Functional Relationships in the Truncated Hemoglobin Family. PLoS Computational Biology, 2016, 12, e1004701.	3.2	36
8	The diversity of algal phospholipase D homologs revealed by biocomputational analysis. Journal of Phycology, 2015, 51, 943-962.	2.3	13
9	Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (<i>Solanum) Tj ETQq1</i>	1 0. <u>7</u> 84314 5.2	၊ rggT /Overld
10	Phospholipase D δ knock-out mutants are tolerant to severe drought stress. Plant Signaling and Behavior, 2015, 10, e1089371.	2.4	28
11	Extensive Expansion of A1 Family Aspartic Proteinases in Fungi Revealed by Evolutionary Analyses of 107 Complete Eukaryotic Proteomes. Genome Biology and Evolution, 2014, 6, 1480-1494.	2.5	17
12	The tomato phosphatidylinositol-phospholipase C2 (SIPLC2) is required for defense gene induction by the fungal elicitor xylanase. Journal of Plant Physiology, 2014, 171, 959-965.	3.5	26
13	Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants. Planta, 2012, 235, 1299-1313.	3.2	77
14	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
15	Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. Journal of Plant Physiology, 2011, 168, 534-539.	3.5	86
16	The aspartic proteinase family of three Phytophthora species. BMC Genomics, 2011, 12, 254.	2.8	19
17	Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant Journal, 2010, 62, 224-239.	5.7	127
18	Nitric Oxide and Phosphatidic Acid Signaling in Plants. Plant Cell Monographs, 2010, , 223-242.	0.4	9

Arjen ten Have

#	Article	IF	CITATIONS
19	The Botrytis cinerea aspartic proteinase family. Fungal Genetics and Biology, 2010, 47, 53-65.	2.1	101
20	Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica, 2008, 159, 83-92.	1.2	27
21	Nitric Oxide Is Critical for Inducing Phosphatidic Acid Accumulation in Xylanase-elicited Tomato Cells. Journal of Biological Chemistry, 2007, 282, 21160-21168.	3.4	118
22	Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato. European Journal of Plant Pathology, 2007, 117, 153-166.	1.7	32
23	Three QTLs for Botrytis cinerea resistance in tomato. Theoretical and Applied Genetics, 2007, 114, 585-593.	3.6	50
24	Nitric Oxide Functions as Intermediate in Auxin, Abscisic Acid, and Lipid Signaling Pathways. Plant Cell Monographs, 2006, , 113-130.	0.4	11
25	An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology (United Kingdom), 2004, 150, 2475-2489.	1.8	72
26	A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta, 2003, 217, 517-522.	3.2	125
27	The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea. Plant Physiology, 2002, 129, 1341-1351.	4.8	301
28	The Contribution of Cell Wall Degrading Enzymes to Pathogenesis of Fungal Plant Pathogens. , 2002, , 341-358.		68
29	Botrytis cinerea Endopolygalacturonase Genes Are Differentially Expressed in Various Plant Tissues. Fungal Genetics and Biology, 2001, 33, 97-105.	2.1	129
30	Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Current Genetics, 2000, 37, 152-157.	1.7	131
31	Transgenic Expression of Pear PGIP in Tomato Limits Fungal Colonization. Molecular Plant-Microbe Interactions, 2000, 13, 942-950.	2.6	228
32	Infection Strategies of Botrytis cinerea and Related Necrotrophic Pathogens. , 2000, , 33-64.		115
33	Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. European Journal of Plant Pathology, 1998, 104, 207-220.	1.7	170
34	The Endopolygalacturonase Gene Bcpg1 Is Required for Full Virulence of Botrytis cinerea. Molecular Plant-Microbe Interactions, 1998, 11, 1009-1016.	2.6	513
35	Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. , 1997, 34, 89-97.		144
36	Molecular cloning of two different ACC synthase PCR fragments in carnation flowers and organ-specific expression of the corresponding genes. Plant Molecular Biology, 1994, 26, 453-458.	3.9	57