Arjen ten Have

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579350/publications.pdf

Version: 2024-02-01

36 papers 3,872 citations

279798 23 h-index 395702 33 g-index

41 all docs

41 docs citations

41 times ranked

3997 citing authors

#	Article	IF	Citations
1	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
2	The Endopolygalacturonase Gene Bcpg1 Is Required for Full Virulence of Botrytis cinerea. Molecular Plant-Microbe Interactions, 1998, 11, 1009-1016.	2.6	513
3	The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea. Plant Physiology, 2002, 129, 1341-1351.	4.8	301
4	Transgenic Expression of Pear PGIP in Tomato Limits Fungal Colonization. Molecular Plant-Microbe Interactions, 2000, 13, 942-950.	2.6	228
5	Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. European Journal of Plant Pathology, 1998, 104, 207-220.	1.7	170
6	Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence., 1997, 34, 89-97.		144
7	Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Current Genetics, 2000, 37, 152-157.	1.7	131
8	Botrytis cinerea Endopolygalacturonase Genes Are Differentially Expressed in Various Plant Tissues. Fungal Genetics and Biology, 2001, 33, 97-105.	2.1	129
9	Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant Journal, 2010, 62, 224-239.	5.7	127
10	A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta, 2003, 217, 517-522.	3.2	125
11	Nitric Oxide Is Critical for Inducing Phosphatidic Acid Accumulation in Xylanase-elicited Tomato Cells. Journal of Biological Chemistry, 2007, 282, 21160-21168.	3.4	118
12	Infection Strategies of Botrytis cinerea and Related Necrotrophic Pathogens., 2000,, 33-64.		115
13	The Botrytis cinerea aspartic proteinase family. Fungal Genetics and Biology, 2010, 47, 53-65.	2.1	101
14	Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. Journal of Plant Physiology, 2011, 168, 534-539.	3.5	86
15	Evolution and functional diversification of the small heat shock protein/l±-crystallin family in higher plants. Planta, 2012, 235, 1299-1313.	3.2	77
16	An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology (United Kingdom), 2004, 150, 2475-2489.	1.8	72
17	The Contribution of Cell Wall Degrading Enzymes to Pathogenesis of Fungal Plant Pathogens. , 2002, , 341-358.		68
18	Molecular cloning of two different ACC synthase PCR fragments in carnation flowers and organ-specific expression of the corresponding genes. Plant Molecular Biology, 1994, 26, 453-458.	3.9	57

#	Article	IF	Citations
19	Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chemistry, 2017, 229, 837-846.	8.2	57
20	Three QTLs for Botrytis cinerea resistance in tomato. Theoretical and Applied Genetics, 2007, 114, 585-593.	3.6	50
21	Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (<i>Solanum) Tj ETQq1 1</i>	0.784314 5.2	ł rgBT /Overl
22	Evolutionary and Functional Relationships in the Truncated Hemoglobin Family. PLoS Computational Biology, 2016, 12, e1004701.	3.2	36
23	Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato. European Journal of Plant Pathology, 2007, 117, 153-166.	1.7	32
24	Phospholipase D \hat{l} knock-out mutants are tolerant to severe drought stress. Plant Signaling and Behavior, 2015, 10, e1089371.	2.4	28
25	Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica, 2008, 159, 83-92.	1.2	27
26	The tomato phosphatidylinositol-phospholipase C2 (SIPLC2) is required for defense gene induction by the fungal elicitor xylanase. Journal of Plant Physiology, 2014, 171, 959-965.	3.5	26
27	The aspartic proteinase family of three Phytophthora species. BMC Genomics, 2011, 12, 254.	2.8	19
28	Extensive Expansion of A1 Family Aspartic Proteinases in Fungi Revealed by Evolutionary Analyses of 107 Complete Eukaryotic Proteomes. Genome Biology and Evolution, 2014, 6, 1480-1494.	2.5	17
29	HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold. PLoS ONE, 2018, 13, e0193757.	2.5	16
30	The diversity of algal phospholipase D homologs revealed by biocomputational analysis. Journal of Phycology, 2015, 51, 943-962.	2.3	13
31	Nitric Oxide Functions as Intermediate in Auxin, Abscisic Acid, and Lipid Signaling Pathways. Plant Cell Monographs, 2006, , 113-130.	0.4	11
32	Nitric Oxide and Phosphatidic Acid Signaling in Plants. Plant Cell Monographs, 2010, , 223-242.	0.4	9
33	Functional Classification and Characterization of the Fungal Glycoside Hydrolase 28 Protein Family. Journal of Fungi (Basel, Switzerland), 2022, 8, 217.	3.5	6
34	Molecular dynamics and structure function analysis show that substrate binding and specificity are major forces in the functional diversification of Eqolisins. BMC Bioinformatics, 2018, 19, 338.	2.6	3
35	Computational Functional Analysis of Lipid Metabolic Enzymes. Methods in Molecular Biology, 2017, 1609, 195-216.	0.9	2
36	Structure-function analysis of Sedolisins: evolution of tripeptidyl peptidase and endopeptidase subfamilies in fungi. BMC Bioinformatics, 2018, 19, 464.	2.6	2