Maria Balaguer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5793182/publications.pdf

Version: 2024-02-01

414414 430874 1,055 43 18 32 citations h-index g-index papers 43 43 43 1059 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment. Journal of Materials Chemistry A, 2022, 10, 2152-2195.	10.3	31
2	Evaluation of Er Doped CeO2-δ as Oxygen Transport Membrane. Membranes, 2022, 12, 172.	3.0	2
3	Boosting methane partial oxidation on ceria through exsolution of robust Ru nanoparticles. Materials Advances, 2021, 2, 2924-2934.	5.4	15
4	Electric and magnetic properties of lanthanum barium cobaltite. Journal of the American Ceramic Society, 2020, 103, 1809-1818.	3.8	12
5	Structure and water uptake in BaLnCo2O6â^δ (Ln =La, Pr, Nd, Sm, Gd, Tb and Dy). Acta Materialia, 2020, 199, 297-310.	7.9	18
6	In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study. Membranes, 2020, 10, 148.	3.0	5
7	Hydrogen production via microwave-induced water splitting at low temperature. Nature Energy, 2020, 5, 910-919.	39.5	89
8	High-Temperature Structural and Electrical Properties of BaLnCo2O6 Positrodes. Materials, 2020, 13, 4044.	2.9	15
9	Progress in Ce0.8Gd0.2O2â~δ protective layers for improving the CO2 stability of Ba0.5Sr0.5Co0.8Fe0.2O3â~δO2-transport membranes. Sustainable Energy and Fuels, 2020, 4, 3747-3752.	4.9	5
10	Improving the performance of oxygen transport membranes in simulated oxy-fuel power plant conditions by catalytic surface enhancement. Journal of Membrane Science, 2019, 580, 307-315.	8.2	9
11	Creep behavior of porous La0.6Sr0.4Co0.2Fe0.8O3-δ substrate material for oxygen separation application. Journal of the European Ceramic Society, 2018, 38, 1702-1710.	5.7	11
12	Dual-phase membrane based on LaCo0.2Ni0.4Fe0.4O3â^'x-Ce0.8Gd0.2O2â^'x composition for oxygen permeation under CO2/SO2-rich gas environments. Journal of Membrane Science, 2018, 548, 117-124.	8.2	26
13	Characterization and Optimization of La _{0.97} Ni _{0.5} Co _{0.5} O _{3â^Î} -Based Air-Electrodes for Solid Oxide Cells. ACS Applied Energy Materials, 2018, 1, 2784-2792.	5.1	7
14	Mixed Ionic–Electronic Conduction in NiFe ₂ O ₄ –Ce _{0.8} Gd _{0.2} O _{2â^'<i>î´</i>} Nanocomposite Thin Films for Oxygen Separation. ChemSusChem, 2018, 11, 2818-2827.	6.8	11
15	Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Frontiers in Materials, 2018, 5, .	2.4	24
16	Comparison of freeze-dried and tape-cast support microstructure on high-flux oxygen transport membrane performance. Journal of Membrane Science, 2018, 564, 218-226.	8.2	29
17	Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-Î Membranes. ChemistrySelect, 2017, 2, 2949-2955.	1.5	5
18	Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La _{0.8} Sr _{0.2}) _{0.95} MnO _{3+Î′} and Doped Cerias Ce _{1–x} Ln _x O _{2–Î′} (Ln=Gd, La, Er, Pr, Tb and x=0.1–0.2). Fuel Cells, 2017, 100-107.	017,4	7

#	Article	IF	CITATIONS
19	Oxygen permeation and stability of CaTi0.73Fe0.18Mg0.09O3â^δoxygen-transport membrane. Journal of Membrane Science, 2017, 524, 56-63.	8.2	13
20	Influence of Microstructure and Surface Activation of Dualâ€Phase Membrane Ce _{0.8} Gd _{0.2} O _{2â~δ} –FeCo ₂ O ₄ on Oxygen Permeation. Journal of the American Ceramic Society, 2016, 99, 349-355.	3.8	44
21	Optimization of SOFC Composite Cathodes Based on LSM and Doped Cerias Ce0.8Ln0.2O2-Î (Ln = Gd, Er, Tb) Tj E	Т <u>0</u> 91 1 0.	784314 rgl
22	Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-Î:Ce0.8Y0.2O2-Î at intermediate temperatures. Scientific Reports, 2016, 6, 34773.	3.3	46
23	Elastic properties of freeze-cast La0.6Sr0.4Co0.2Fe0.8O3–Β. Journal of the European Ceramic Society, 2016, 36, 1651-1657.	5.7	16
24	Dualâ€Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide. ChemSusChem, 2015, 8, 4242-4249.	6.8	40
25	Oxygen transport membranes in a biomass/coal combined strategy for reducing CO 2 emissions: Permeation study of selected membranes under different CO 2 -rich atmospheres. Catalysis Today, 2015, 257, 221-228.	4.4	20
26	Enhanced Oxygen Separation through Robust Freezeâ€Cast Bilayered Dualâ€Phase Membranes. ChemSusChem, 2014, 7, 2554-2561.	6.8	52
27	Catalytic surface promotion of highly active La0.85Sr0.15Cr0.8Ni0.2O3â^î^î anodes for La5.6WO11.4â^î based proton conducting fuel cells. Applied Catalysis B: Environmental, 2014, 147, 203-207.	20.2	12
28	Particular Transport Properties of NiFe ₂ O ₄ Thin Films at High Temperatures. Journal of Physical Chemistry C, 2014, 118, 24266-24273.	3.1	53
29	Engineering microstructure and redox properties in the mixed conductor Ce _{0.9} Pr _{0.1} O _{2â°Î′} + Co 2 mol%. Dalton Transactions, 2014, 43, 4305-4312.	3.3	22
30	Development and understanding of La0.85Sr0.15Cr1â^2xNixO3â^1Î anodes for La5.6WO11.4â^1Î-based Proton Conducting Solid Oxide Fuel Cells. Journal of Power Sources, 2014, 258, 98-107.	7.8	9
31	Bulk transport and oxygen surface exchange of the mixed ionic–electronic conductor Ce1â^'xTbxO2â^'Î′ (x = 0.1, 0.2, 0.5). Journal of Materials Chemistry A, 2013, 1, 10234.	10.3	40
32	High performance anodes with tailored catalytic properties for La5.6WO11.4â^'Î based proton conducting fuel cells. Journal of Materials Chemistry A, 2013, 1, 3004.	10.3	15
33	SOFC composite cathodes based on LSM and co-doped cerias (Ce0.8Gd0.1X0.1O2–δ, XÂ=ÂGd, Cr, Mg, Bi, Ce). Journal of Power Sources, 2013, 223, 214-220.	7.8	48
34	Fast Oxygen Separation Through SO ₂ - and CO ₂ -Stable Dual-Phase Membrane Based on NiFe ₂ O ₄ –Ce _{0.8} Tb _{0.2} O _{2-Î} . Chemistry of Materials, 2013, 25, 4986-4993.	6.7	79
35	Rare Earthâ€doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 2012, 4, 2102-2111.	3.7	24
36	Mixed Proton–Electron Conducting Chromite Electrocatalysts as Anode Materials for LWOâ€Based Solid Oxide Fuel Cells. ChemSusChem, 2012, 5, 2155-2158.	6.8	17

#	Article	IF	CITATIONS
37	Structural–Transport Properties Relationships on Ce _{1–<i>x</i>} Ln _{<i>x</i>} O _{2â~δ} System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb,) Tj	ЕЛ.Q q1 1	0 <i>7</i> 984314 r
38	Study of the Transport Properties of the Mixed Ionic Electronic Conductor $Ce < sub > 1\hat{a}^* < i > x < / i > < / sub > Tb < sub > (i > x < / i > < / sub > O < sub > 2\hat{a}^* \hat{i}^* < / sub > + Co (< i > x < / i > = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 2011, 23, 2333-2343.$	6.7	66
39	Quenching of porous silicon photoluminescence by molecular oxygen and dependence of this phenomenon on storing media and method of preparation of pSi photosensitizer. Journal of Nanoparticle Research, 2010, 12, 2907-2917.	1.9	16
40	Porous Silicon for Photosensitized Formation of Singlet Oxygen in Water and in Simulated Body Fluid: Two Methods of Modification by Undecylenic Acid. Journal of Nanoscience and Nanotechnology, 2009, 9, 3455-3461.	0.9	2
41	Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals. Journal of Nanoparticle Research, 2008, 10, 1241-1249.	1.9	7
42	Durability and photophysical properties of surfactantâ€covered porous silicon particles in aqueous suspensions. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2585-2588.	1.8	10
43	Nano Suspension of Porous Silicon in Water: Two Methods of Material Preparation and Modification by Surfactants. ECS Transactions, 2007, 6, 63-70.	0.5	2