Christine M Papadakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5792896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s. ACS Nano, 2014, 8, 2686-2696.	14.6	125
2	Thermoresponsive PS- <i>b</i> -PNIPAM- <i>b</i> -PS Micelles: Aggregation Behavior, Segmental Dynamics, and Thermal Response. Macromolecules, 2010, 43, 2490-2501.	4.8	95
3	Characterization of polymer thin films with smallâ€angle Xâ€ray scattering under grazing incidence (CISAXS). Synchrotron Radiation News, 2002, 15, 35-42.	0.8	88
4	Structural Rearrangements in a Lamellar Diblock Copolymer Thin Film during Treatment with Saturated Solvent Vapor. Macromolecules, 2010, 43, 418-427.	4.8	85
5	Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 TFS
6	Effect of Polymer Architecture of Amphiphilic Poly(2-oxazoline) Copolymers on the Aggregation and Aggregate Structure. Macromolecular Chemistry and Physics, 2007, 208, 1402-1408.	2.2	77
7	Synthesis of Symmetrical Triblock Copolymers of Styrene and <i>N</i> â€isopropylacrylamide Using Bifunctional Bis(trithiocarbonate)s as RAFT Agents. Macromolecular Chemistry and Physics, 2009, 210, 565-578.	2.2	73
8	Lamellar Diblock Copolymer Thin Films Investigated by Tapping Mode Atomic Force Microscopy:Â Molar-Mass Dependence of Surface Ordering. Macromolecules, 2003, 36, 8717-8727.	4.8	72
9	Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy. Colloid and Polymer Science, 2004, 282, 833-843.	2.1	69
10	Restructuring in block copolymer thin films: In situ GISAXS investigations during solvent vapor annealing. Progress in Polymer Science, 2017, 66, 80-115.	24.7	68
11	Phase Separation in Semidilute Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions. Langmuir, 2012, 28, 8791-8798.	3.5	64
12	Switch It Inside-Out: "Schizophrenic―Behavior of All Thermoresponsive UCST–LCST Diblock Copolymers. Langmuir, 2019, 35, 9660-9676.	3.5	59
13	Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS: Different Behavior of Parallel and Perpendicular Lamellae. Macromolecules, 2014, 47, 5711-5718.	4.8	57
14	Reduced Phase Separation and Slowing of Dynamics in Polyurethanes with Three-Dimensional POSS-Based Cross-Linking Moieties. Macromolecules, 2015, 48, 1429-1441.	4.8	57
15	Structural Instabilities in Lamellar Diblock Copolymer Thin Films During Solvent Vapor Uptake. Langmuir, 2008, 24, 13815-13818.	3.5	55
16	From Molecular Dehydration to Excess Volumes of Phase-Separating PNIPAM Solutions. Journal of Physical Chemistry B, 2014, 118, 4253-4260.	2.6	55
17	Micellar Structures of Hydrophilic/Lipophilic and Hydrophilic/Fluorophilic Poly(2â€oxazoline) Diblock Copolymers in Water. Macromolecular Chemistry and Physics, 2008, 209, 2248-2258.	2.2	53
18	Thermoresponsive amphiphilic symmetrical triblock copolymers with a hydrophilic middle block made of poly(N-isopropylacrylamide): synthesis, self-organization, and hydrogel formation. Colloid and Polymer Science, 2010, 288, 499-517.	2.1	51

CHRISTINE M PAPADAKIS

#	Article	IF	CITATIONS
19	Vertical Domain Orientation in Cylinder-Forming Diblock Copolymer Films upon Solvent Vapor Annealing. Macromolecules, 2016, 49, 415-424.	4.8	50
20	Aggregation behavior of thermo-responsive poly(2-oxazoline)s at the cloud point investigated by FCS and SANS. Colloid and Polymer Science, 2012, 290, 385-400.	2.1	48
21	Kinetics of Collapse Transition and Cluster Formation in a Thermoresponsive Micellar Solution of P(Sâ€ <i>b</i> â€NIPAMâ€ <i>b</i> â€S) Induced by a Temperature Jump. Macromolecular Rapid Communications, 2012, 33, 254-259.	3.9	47
22	"Schizophrenic―Micelles from Doubly Thermoresponsive Polysulfobetaine- <i>b</i> -poly(<i>N</i> -isopropylmethacrylamide) Diblock Copolymers. Macromolecules, 2017, 50, 3985-3999.	4.8	47
23	Aggregation Behavior of Doubly Thermoresponsive Polysulfobetaine- <i>b</i> -poly(<i>N</i> -isopropylacrylamide) Diblock Copolymers. Macromolecules, 2016, 49, 6655-6668.	4.8	46
24	Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside. Journal of Physical Chemistry Letters, 2017, 8, 3800-3804.	4.6	44
25	Thermoresponsive Hydrogels Based on Telechelic Polyelectrolytes: From Dynamic to "Frozen― Networks. Macromolecules, 2018, 51, 2169-2179.	4.8	42
26	Thermoresponsive Hydrogels from Symmetrical Triblock Copolymers Poly(styrene-block-(methoxy) Tj ETQq0 0 0 rg	ʒ₿Ţ_/Overl	oçk 10 Tf 50
27	Structural Changes in Lamellar Diblock Copolymer Thin Films upon Swelling in Nonselective Solvents. Macromolecules, 2013, 46, 5786-5795.	4.8	40
28	Cononsolvency of Water/Methanol Mixtures for PNIPAM and PS- <i>b</i> PNIPAM: Pathway of Aggregate Formation Investigated Using Time-Resolved SANS. Macromolecules, 2014, 47, 6867-6879.	4.8	40
29	Stepwise Swelling of a Thin Film of Lamellae-Forming Poly(styrene- <i>b</i> -butadiene) in Cyclohexane Vapor. Macromolecules, 2012, 45, 5185-5195.	4.8	39
30	Hydrolytically Degradable Polymer Micelles for Drug Delivery: A SAXS/SANS Kinetic Study. Biomacromolecules, 2013, 14, 4061-4070.	5.4	39
31	Polymers in focus: fluorescence correlation spectroscopy. Colloid and Polymer Science, 2014, 292, 2399-2411.	2.1	39
32	Sustainable Chiral Polyamides with High Melting Temperature via Enhanced Anionic Polymerization of a Menthone-Derived Lactam. Macromolecular Rapid Communications, 2016, 37, 851-857.	3.9	39
33	Solvent Dynamics in Solutions of PNIPAM in Water/Methanol Mixtures—A Quasi-Elastic Neutron Scattering Study. Journal of Physical Chemistry B, 2016, 120, 4679-4688.	2.6	38
34	Role of the tracer in characterizing the aggregation behavior of aqueous block copolymer solutions using fluorescence correlation spectroscopy. Colloid and Polymer Science, 2007, 285, 491-497.	2.1	36
35	"Schizophrenic―self-assembly of dual thermoresponsive block copolymers bearing a zwitterionic and a non-ionic hydrophilic block. Polymer, 2017, 122, 347-357	3.8	36
36	Water Storage in Thin Films Maintaining the Total Film Thickness as Probed with in situ Neutron Reflectivity. Macromolecular Rapid Communications, 2009, 30, 114-119.	3.9	35

#	Article	IF	CITATIONS
37	Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency. Macromolecular Rapid Communications, 2016, 37, 420-425.	3.9	34
38	Double Networks Based on Amphiphilic Cross-Linked Star Block Copolymer First Conetworks and Randomly Cross-Linked Hydrophilic Second Networks. Macromolecules, 2016, 49, 1731-1742.	4.8	34
39	The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers. Colloid and Polymer Science, 2011, 289, 711-720.	2.1	33
40	Collapse transition in thin films of poly(methoxydiethylenglycol acrylate). Colloid and Polymer Science, 2011, 289, 569-581.	2.1	33
41	Switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) probed with in situ neutron reflectivity. Soft Matter, 2012, 8, 5241.	2.7	33
42	Dual Orthogonal Switching of the "Schizophrenic―Self-Assembly of Diblock Copolymers. Macromolecules, 2018, 51, 2604-2614.	4.8	33
43	Temperature-Dependent Phase Behavior of the Thermoresponsive Polymer Poly(<i>N</i> -isopropylmethacrylamide) in an Aqueous Solution. Macromolecules, 2020, 53, 6816-6827.	4.8	32
44	Characterization of Lipid-Based Hexosomes as Versatile Vaccine Carriers. Molecular Pharmaceutics, 2016, 13, 3945-3954.	4.6	31
45	Structure and Crystallization Behavior of Poly(ethylene oxide) (PEO) Chains in Core–Shell Brush Copolymers with Poly(propylene oxide)- <i>block</i> poly(ethylene oxide) Side Chains. Macromolecules, 2016, 49, 5963-5977.	4.8	31
46	Responsive Hydrogels from Associative Block Copolymers: Physical Gelling through Polyion Complexation. Gels, 2017, 3, 3.	4.5	31
47	Gelation Mechanism of Poly(<i>N</i> -isopropylacrylamide)â^'Clay Nanocomposite Hydrogels Synthesized by Photopolymerization. Langmuir, 2008, 24, 12627-12635.	3.5	30
48	Stimuli-Responsive Amphiphilic Polyelectrolyte Heptablock Copolymer Physical Hydrogels: An Unusual pH-Response. Macromolecules, 2012, 45, 3523-3530.	4.8	30
49	Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers – influence of concentration, start and target temperatures. Soft Matter, 2013, 9, 1685-1699.	2.7	30
50	Structure and Thermal Response of Thin Thermoresponsive Polystyrene- <i>block</i> -poly(methoxydiethylene glycol acrylate)- <i>block</i> -polystyrene Films. Macromolecules, 2013, 46, 4069-4080.	4.8	30
51	Amphiphilic Triblock Copolymers from Poly(2â€oxazoline) with Different Hydrophobic Blocks: Changes of the Micellar Structures upon Addition of a Strongly Hydrophobic Cancer Drug. Macromolecular Chemistry and Physics, 2016, 217, 1448-1456.	2.2	28
52	Dynamic glass transition of the rigid amorphous fraction in polyurethane-urea/SiO ₂ nanocomposites. Soft Matter, 2017, 13, 4580-4590.	2.7	28
53	In Situ Tracking of Composition and Morphology of a Diblock Copolymer Film with GISAXS during Exchange of Solvent Vapors at Elevated Temperatures. Advanced Functional Materials, 2018, 28, 1706226.	14.9	28
54	Swelling and Exchange Behavior of Poly(sulfobetaine)-Based Block Copolymer Thin Films. Macromolecules, 2019, 52, 3486-3498.	4.8	28

CHRISTINE M PAPADAKIS

#	Article	IF	CITATIONS
55	Phase Transition Kinetics of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Macromolecules, 2020, 53, 2841-2855.	4.8	28
56	Injectable Phenolic-Chitosan Self-Healing Hydrogel with Hierarchical Micelle Architectures and Fast Adhesiveness. Chemistry of Materials, 2021, 33, 3945-3958.	6.7	28
57	Cononsolvency of thermoresponsive polymers: where we are now and where we are going. Soft Matter, 2022, 18, 2884-2909.	2.7	28
58	Functional materials analysis using <i>in situ</i> and <i>in operando</i> X-ray and neutron scattering. IUCrJ, 2015, 2, 292-304.	2.2	27
59	POSS Moieties with PEG Vertex Groups as Diluent in Polyurethane Elastomers: Morphology and Phase Separation. Macromolecules, 2016, 49, 6507-6517.	4.8	26
60	Influence of Hydrophobic Polystyrene Blocks on the Rehydration of Polystyrene- <i>block</i> -poly(methoxy diethylene glycol acrylate)- <i>block</i> -polystyrene Films Investigated by <i>in Situ</i> Neutron Reflectivity. Macromolecules, 2016, 49, 317-326.	4.8	26
61	Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films: Theory and Experiment. Macromolecular Rapid Communications, 2007, 28, 579-584.	3.9	25
62	Structure and Dynamics of Asymmetric Poly(styrene- <i>b</i> -1,4-isoprene) Diblock Copolymer under 1D and 2D Nanoconfinement. ACS Applied Materials & Interfaces, 2015, 7, 12328-12338.	8.0	25
63	Structural Evolution of Perpendicular Lamellae in Diblock Copolymer Thin Films during Solvent Vapor Treatment Investigated by Grazingâ€Incidence Smallâ€Angle Xâ€Ray Scattering. Macromolecular Rapid Communications, 2013, 34, 1289-1295.	3.9	23
64	Amphiphilic single and double networks: a small-angle X-ray scattering investigation. Colloid and Polymer Science, 2016, 294, 1027-1036.	2.1	23
65	Superhydrophobic Silicon Nanocrystal–Silica Aerogel Hybrid Materials: Synthesis, Properties, and Sensing Application. Langmuir, 2018, 34, 4888-4896.	3.5	23
66	Morphology of Semicrystalline Diblock Copolymer Thin Films upon Directional Solvent Vapor Flow. Macromolecular Chemistry and Physics, 2010, 211, 2102-2108.	2.2	22
67	Rehydration of Thermoresponsive Poly(monomethoxydiethylene glycol acrylate) Films Probed <i>in Situ</i> by Real-Time Neutron Reflectivity. Macromolecules, 2015, 48, 3604-3612.	4.8	21
68	Effect of chain architecture on the swelling and thermal response of star-shaped thermo-responsive (poly(methoxy diethylene glycol acrylate)-block-polystyrene)3 block copolymer films. Soft Matter, 2018, 14, 6582-6594.	2.7	21
69	Morphology, thermal properties and molecular dynamics of syndiotactic polystyrene (s-PS) nanocomposites with aligned graphene oxide and graphene nanosheets. Polymer, 2018, 153, 548-557.	3.8	21
70	Hydration and Dehydration Kinetics: Comparison between Poly(<i>N</i> -isopropyl methacrylamide) and Poly(methoxy diethylene glycol acrylate) Films. Langmuir, 2019, 35, 7691-7702.	3.5	21
71	Cellular uptake of self-assembled phytantriol-based hexosomes is independent of major endocytic machineries. Journal of Colloid and Interface Science, 2019, 553, 820-833.	9.4	21
72	Salt-Induced Changes in Triblock Polyampholyte Hydrogels: Computer Simulations and Rheological, Structural, and Dynamic Characterization. Macromolecules, 2015, 48, 8177-8189.	4.8	20

Christine M Papadakis

#	Article	IF	CITATIONS
73	All-In-One "Schizophrenic―Self-Assembly of Orthogonally Tuned Thermoresponsive Diblock Copolymers. Langmuir, 2019, 35, 6441-6452.	3.5	20
74	Self-Assembled Micelles from Thermoresponsive Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 Td (n Macromolecules, 2021, 54, 384-397.	nethacrylate 4.8)- <i>b</i> poly 20
75	PMMA- <i>b</i> -PNIPAM Thin Films Display Cononsolvency-Driven Response in Mixed Water/Methanol Vapors. Macromolecules, 2021, 54, 3517-3530.	4.8	20
76	Pressure-Dependence of Poly(<i>N</i> -isopropylacrylamide) Mesoglobule Formation in Aqueous Solution. ACS Macro Letters, 2017, 6, 1180-1185.	4.8	19
77	Formation and Growth of Mesoglobules in Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions Revealed with Kinetic Small-Angle Neutron Scattering and Fast Pressure Jumps. ACS Macro Letters, 2018, 7, 1155-1160.	4.8	19
78	Polyurethanes with POSS pendent on flexible hard segments: Morphology and glass transition. Polymer, 2018, 147, 225-236.	3.8	19
79	Kinetics of Mesoglobule Formation and Growth in Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions: Pressure Jumps at Low and at High Pressure. Macromolecules, 2019, 52, 6416-6427.	4.8	18
80	Water Dynamics in a Concentrated Poly(<i>N</i> -isopropylacrylamide) Solution at Variable Pressure. Macromolecules, 2019, 52, 1942-1954.	4.8	18
81	Solvent Vapor Annealing of a Diblock Copolymer Thin Film with a Nonselective and a Selective Solvent: Importance of Pathway for the Morphological Changes. Macromolecular Rapid Communications, 2020, 41, 2000150.	3.9	18
82	The collapse and aggregation of thermoresponsive poly(2-oxazoline) gradient copolymers: a time-resolved SANS study. Colloid and Polymer Science, 2014, 292, 2413-2425.	2.1	17
83	Novel thermoresponsive block copolymers having different architectures—structural, rheological, thermal, and dielectric investigations. Colloid and Polymer Science, 2014, 292, 1757-1774.	2.1	17
84	Macromolecular <i>p</i> HPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment. Biomacromolecules, 2018, 19, 470-480.	5.4	17
85	Immune responses induced by nano-self-assembled lipid adjuvants based on a monomycoloyl glycerol analogue after vaccination with the Chlamydia trachomatis major outer membrane protein. Journal of Controlled Release, 2018, 285, 12-22.	9.9	17
86	Poly(sulfobetaine) versus Poly(<i>N</i> -isopropylmethacrylamide): Co-Nonsolvency-Type Behavior of Thin Films in a Water/Methanol Atmosphere. Macromolecules, 2021, 54, 1548-1556.	4.8	17
87	Thermo-responsive Amphiphilic Di- and Triblock Copolymers Based on Poly(N-isopropylacrylamide) and Poly(methoxy diethylene glycol acrylate): Aggregation and Hydrogel Formation in Bulk Solution and in Thin Films. , 2013, , 15-34.		16
88	Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity. Polymer, 2017, 124, 263-273.	3.8	14
89	Structural Properties of Micelles Formed by Telechelic Pentablock Quaterpolymers with pH-Responsive Midblocks and Thermoresponsive End Blocks in Aqueous Solution. Macromolecules, 2019, 52, 9746-9758.	4.8	13
90	Co-Nonsolvency Effect in Solutions of Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 Td (methacrylate	e)- <i>b</i> -p 4.8	oly(<i>N</i> -is

Mixtures. Macromolecules, 2021, 54, 5825-5837.

#	Article	IF	CITATIONS
91	Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers. Colloid and Polymer Science, 2017, 295, 1313-1325.	2.1	12
92	Polysulfobetaines in Aqueous Solution and in Thin Film Geometry. Materials, 2018, 11, 850.	2.9	12
93	Binding of HSA to Macromolecular <i>p</i> HPMA Based Nanoparticles for Drug Delivery: An Investigation Using Fluorescence Methods. Langmuir, 2018, 34, 7998-8006.	3.5	12
94	Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins. Pharmaceutics, 2020, 12, 106.	4.5	12
95	A molecular brush with thermoresponsive poly(2-ethyl-2-oxazoline) side chains: a structural investigation. Colloid and Polymer Science, 2021, 299, 193-203.	2.1	12
96	Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing – An in-situ time-resolved GISAXS study. European Polymer Journal, 2016, 81, 607-620.	5.4	11
97	Vertical vs Lateral Macrophase Separation in Thin Films of Block Copolymer Mixtures: Computer Simulations and GISAXS Experiments. ACS Applied Materials & Interfaces, 2017, 9, 31291-31301.	8.0	11
98	Cyclic Water Storage Behavior of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Macromolecules, 2020, 53, 9108-9121.	4.8	11
99	(Co)polymerization of (â^')-menthide and β-butyrolactone with yttrium-bis(phenolates): tuning material properties of sustainable polyesters. Polymer Chemistry, 2020, 11, 4426-4437.	3.9	11
100	A Small-Angle Scattering Study of the Bulk Structure of a Symmetric Diblock Copolymer System. Journal De Physique II, 1997, 7, 1829-1854.	0.9	11
101	Comparative Investigation of the Thermoresponsive Behavior of Two Diblock Copolymers Comprising PNIPAM and PMDEGA Blocks. Journal of Physical Chemistry B, 2018, 122, 2655-2668.	2.6	10
102	Pressure Dependence of the Cononsolvency Effect in Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions: A SANS Study. Macromolecules, 2020, 53, 3946-3955.	4.8	10
103	Thermoresponsive Molecular Brushes with Propylene Oxide/Ethylene Oxide Copolymer Side Chains in Aqueous Solution. Macromolecules, 2020, 53, 4068-4081.	4.8	10
104	Salt-Dependent Phase Transition Behavior of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Langmuir, 2021, 37, 9179-9191.	3.5	10
105	Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution—a SANS study of the temperature-induced switching behavior. Colloid and Polymer Science, 2015, 293, 1515-1523.	2.1	9
106	Crosstalk between responsivities to various stimuli in multiresponsive polymers: change in polymer chain and external environment polarity as the key factor. Colloid and Polymer Science, 2019, 297, 1383-1401.	2.1	8
107	Co-nonsolvency in concentrated aqueous solutions of PNIPAM: effect of methanol on the collective and the chain dynamics. Soft Matter, 2020, 16, 8462-8472.	2.7	8
108	Solvation Behavior of Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Mixed Water/Methanol Vapors. Macromolecules, 2021, 54, 7147-7159.	4.8	8

#	Article	IF	CITATIONS
109	Complex Macrophaseâ€Separated Nanostructure Induced by Microphase Separation in Binary Blends of Lamellar Diblock Copolymer Thin Films. Macromolecular Rapid Communications, 2014, 35, 1622-1629.	3.9	7
110	Pressure Dependence of Water Dynamics in Concentrated Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions with a Methanol Cosolvent. Macromolecules, 2021, 54, 4387-4400.	4.8	7
111	Highly Tunable Nanostructures in a Doubly pHâ€Responsive Pentablock Terpolymer in Solution and in Thin Films. Advanced Functional Materials, 2021, 31, 2102905.	14.9	7
112	Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Water/Acetone Atmosphere: Modulation of Water Hydration and Co-nonsolvency-Triggered Film Contraction. Langmuir, 2022, 38, 6934-6948.	3.5	7
113	Charge-Dependent Microphase Separation in Thin Films from a Multiresponsive Pentablock Quaterpolymer: A GISAXS Investigation. Macromolecules, 2020, 53, 6255-6266.	4.8	6
114	pH Responsiveness of hydrogels formed by telechelic polyampholytes. Soft Matter, 2017, 13, 3568-3579.	2.7	5
115	Effect of pH on the Dynamics and Structure of Thermoresponsive Telechelic Polyelectrolyte Networks: Impact on Hydrogel Injectability. ACS Applied Polymer Materials, 2021, 3, 819-829.	4.4	5
116	Optical properties of polybutadiene in the bulk and near a gold interface. Colloid and Polymer Science, 2012, 290, 1731-1741.	2.1	4
117	Ternary Nanoswitches Realized with Multiresponsive PMMA―b â€PNIPMAM Films in Mixed Water/Acetone Vapor Atmospheres. Advanced Engineering Materials, 2021, 23, 2100191.	3.5	4
118	Droplet Formation by Chemically Fueled Self-Assembly: The Role of Precursor Hydrophobicity. Journal of Physical Chemistry B, 2021, 125, 13542-13551.	2.6	4
119	In Situ GISAXS Observation and Large Area Homogeneity Study of Slot-Die Printed PS- <i>b</i> -P4VP and PS- <i>b</i> -P4VP/FeCl ₃ Thin Films. ACS Applied Materials & amp; Interfaces, 2022, 14, 3143-3155.	8.0	4
120	Preparation of trypsin-based nanoparticles, colloidal properties and ability to bind bioactive compounds. International Journal of Biological Macromolecules, 2022, 208, 678-687.	7.5	4
121	Rigid-to-Flexible Transition in a Molecular Brush in a Good Solvent at a Semidilute Concentration. Langmuir, 2022, 38, 5226-5236.	3.5	3
122	Cononsolvency of the responsive polymer poly(N-isopropylacrylamide) in water/methanol mixtures: a dynamic light scattering study of the effect of pressure on the collective dynamics. Colloid and Polymer Science, 2022, 300, 1269-1279.	2.1	3
123	Density Profile in Thin Films of Polybutadiene on Silicon Oxide Substrates: A TOF-NR Study. Langmuir, 2013, 29, 10759-10768.	3.5	2
124	Macromol. Rapid Commun. 10/2016. Macromolecular Rapid Communications, 2016, 37, 876-876.	3.9	2
125	Nanoscale disintegration kinetics of mesoglobules in aqueous poly(<i>N</i> -isopropylacrylamide) solutions revealed by small-angle neutron scattering and pressure jumps. Nanoscale, 2021, 13, 13421-13426.	5.6	2
126	Special issue in honor of Friedrich Kremer. Colloid and Polymer Science, 2014, 292, 1735-1736.	2.1	1

#	Article	IF	CITATIONS
127	Macromol. Rapid Commun. 3/2012. Macromolecular Rapid Communications, 2012, 33, 264-264.	3.9	0
128	Effects of nanoparticles on phase morphology in thin films of phase-separated diblock copolymers. Powder Diffraction, 2017, 32, S141-S150.	0.2	0
129	Effect of cosolvent on the rheological properties and self-assembled structures from telechelic polyampholytes. Colloid and Polymer Science, 2021, 299, 419-428.	2.1	0