Salah A Makhlouf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5792421/publications.pdf

Version: 2024-02-01

236925 197818 3,242 51 25 49 citations h-index g-index papers 51 51 51 3586 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural and Magnetization Studies of Cobalt Ferrite Nanoparticles Synthesized by the Microwave-Combustion Method. Current Analytical Chemistry, 2018, 14, 641-645.	1.2	1
2	Electrical Properties of Cobalt Oxide/Silica Nanocomposites Obtained by Sol-Gel Technique. American Journal of Engineering and Applied Sciences, 2016, 9, 12-16.	0.6	10
3	Role of Cu2+ substitution on the structural and magnetic properties of Ni-ferrite nanoparticles synthesized by the microwave-combustion method. Ceramics International, 2015, 41, 11264-11271.	4.8	21
4	Enhancement of adsorption efficiency of methylene blue on Co ₃ O ₄ /SiO ₂ nanocomposite. Desalination and Water Treatment, 2015, 53, 2980-2989.	1.0	88
5	Co3O4/SiO2 nanocomposites for supercapacitor application. Journal of Solid State Electrochemistry, 2014, 18, 2505-2512.	2.5	103
6	Synthesis of highly ordered 30nm NiFe2O4 particles by the microwave-combustion method. Journal of Magnetism and Magnetic Materials, 2014, 369, 55-61.	2.3	39
7	Structural, optical and electrical properties of sol–gel prepared mesoporous Co3O4/SiO2 nanocomposites. Journal of Alloys and Compounds, 2013, 579, 606-611.	5.5	72
8	Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattices and Microstructures, 2013, 64, 107-117.	3.1	143
9	Mössbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave-combustion method. Journal of Magnetism and Magnetic Materials, 2013, 343, 21-26.	2.3	66
10	Structural, morphological and electrical properties of Cr2O3 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 337-343.	3.5	60
11	HUMIDITY SENSING PROPERTIES OF COBALT OXIDE/SILICA NANOCOMPOSITES PREPARED VIA SOL–GEL AND RELATED ROUTES. Nano, 2012, 07, 1250038.	1.0	48
12	Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Materials Chemistry and Physics, 2011, 128, 70-76.	4.0	64
13	Particle size-dependent electrical properties of nanocrystalline NiO. Journal of Materials Science, 2009, 44, 3438-3444.	3.7	72
14	Humidity sensing properties of porous iron oxide/silica nanocomposite prepared via a formamide modified sol–gel process. Sensors and Actuators A: Physical, 2008, 148, 39-43.	4.1	18
15	Particle size and temperature dependence of exchange bias in NiO nanoparticles. Solid State Communications, 2008, 145, 1-4.	1.9	92
16	Electrical properties of NiO films obtained by high-temperature oxidation of nickel. Thin Solid Films, 2008, 516, 3112-3116.	1.8	37
17	High surface area thermally stabilized porous iron oxide/silica nanocomposites via a formamide modified sol–gel process. Applied Surface Science, 2008, 254, 3767-3773.	6.1	34
18	Dielectric behavior and ac conductivity study of NiOâ^•Al2O3 nanocomposites in humid atmosphere. Journal of Applied Physics, 2006, 100, 094323.	2.5	27

#	Article	IF	Citations
19	VARIABLE RANGE HOPPING CONDUCTION IN NiO/Al2O3 NANOCOMPOSITES. International Journal of Nanoscience, 2005, 04, 163-169.	0.7	2
20	Magnetic properties of Cr2O3 Nanoparticles. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1530-1532.	2.3	56
21	Humidity sensing properties of NiO/Al2O3 nanocomposite materials. Solid State Ionics, 2003, 164, 97-106.	2.7	42
22	Temperature dependence of magnetic resonance in NiO nanoparticles. Journal of Applied Physics, 2003, 93, 7382-7384.	2.5	21
23	Magnetic properties of Co3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2002, 246, 184-190.	2.3	213
24	Electron spin resonance study of NiO antiferromagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2001, 234, 289-293.	2.3	64
25	Magnetic properties of fcc (Co95Fe5)1-xAlx ribbons. , 1999, 122, 223-231.		1
26	Anomalous properties of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 591-594.	2.3	169
27	Magnetic hysteresis anomalies in ferritin. Physical Review B, 1997, 55, R14717-R14720.	3.2	225
28	Magnetic anomalies in NiO nanoparticles. Journal of Applied Physics, 1997, 81, 5561-5563.	2.5	333
29	Finite Size Effects in Antiferromagnetic NiO Nanoparticles. Physical Review Letters, 1997, 79, 1393-1396.	7.8	815
30	Hall effect in Feî—,Ag granular alloys. Journal of Magnetism and Magnetic Materials, 1997, 176, 164-168.	2.3	8
31	Structural difference between Fe/Cu and Fe/Ag granular films produced by a cluster beam method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 217-218, 340-343.	5.6	3
32	Thermoelectric power in Fe-based granular alloys. Journal of Physics Condensed Matter, 1996, 8, 11105-11110.	1.8	3
33	Structural and magnetic evolution in granular Feî—¸Ag alloys produced by the cluster beam technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 31, 133-139.	3.5	11
34	Nanometric structure of Fe clusters in Fe/Cu and Fe/Ag granular materials studied by EXAFS. Physica B: Condensed Matter, 1995, 208-209, 614-616.	2.7	13
35	Fe-Cluster Structure in Giant Magnetoresistive $f = 14$ Ag_{86} Granular Thin Film. Japanese Journal of Applied Physics, 1994, 33, L1327-L1330.	1.5	1
36	Extended X-Ray Absorption Fine Structure Study on Local Structure around Fe Atoms in Fe/Ag Granular Materials. Japanese Journal of Applied Physics, 1994, 33, 4090-4093.	1.5	9

#	Article	lF	Citations
37	Characteristic High-Field Dependence of Magnetoresistance in Fe/Ag Granular Thin Films Fabricated by Sputtering and Annealing. Japanese Journal of Applied Physics, 1994, 33, 4913-4918.	1.5	12
38	Nanoscale structural evolution and associated changes in magnetoresistance in the granular FexAg100â° xthin films. Journal of Applied Physics, 1994, 76, 2969-2973.	2.5	11
39	Metastable b.c.c. and amorphous Ni produced by mechanical alloying and chemical leaching. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1184-1189.	5.6	12
40	Structural and magnetic properties of Feî—'Ag granular material. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 483-486.	5.6	6
41	Structure and magnetic properties of FeAl 1â^'x Rh x alloys. Journal of Magnetism and Magnetic Materials, 1994, 135, 257-264.	2.3	23
42	Characteristic High-Field Dependence and Composition Variation of Giant Magnetoresistance in Fe/Ag Granular Materials. Japanese Journal of Applied Physics, 1994, 33, 1323-1326.	1.5	20
43	Formation of new metastable transition metal alloys by combination of mechanical alloying and chemical leaching. Solid State Ionics, 1993, 60, 299-304.	2.7	8
44	Giant magnetoresistance of Fe-cluster-dispersed Ag films. Journal of Magnetism and Magnetic Materials, 1993, 126, 485-488.	2.3	35
45	A Mössbauer study of Fe clusters grown in Ag matrix. Nuclear Instruments & Methods in Physics Research B, 1993, 76, 197-198.	1.4	13
46	Formation of nominal Ni amorphous phase by mechanical milling and leaching. Journal of Alloys and Compounds, 1993, 199, 119-124.	5 . 5	15
47	Nanoscale quasi-amorphous nickel produced by leaching sputter-deposited Ni25Al75 alloy. Journal of Alloys and Compounds, 1992, 187, L1-L6.	5. 5	7
48	Structural and magnetic properties of non-equilibrium b.c.c. nickel prepared by leaching of mechanically alloyed Ni35Al65. Journal of Alloys and Compounds, 1992, 185, 25-34.	5 . 5	35
49	Structural and magnetic properties of nanocrystalline b.c.c. cobalt particles obtained by leaching of mechanically alloyed Coî—Al. Journal of Alloys and Compounds, 1992, 189, 117-121.	5.5	27
50	Mössbauer Study on Nonequilibrium Disordered Fe-Al AlloysProduced by DC Sputtering. Journal of the Physical Society of Japan, 1991, 60, 3537-3542.	1.6	23
51	Optical and Electrochemical Properties of Co ₃ 0 ₄ /SiO ₂ Nanocomposite. Advanced Materials Research, 0, 1133, 447-451.	0.3	11