Jose Salud Rodriguez-Zavala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5791066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multisite control of the Crabtree effect in ascites hepatoma cells. FEBS Journal, 2001, 268, 2512-2519.	0.2	116
2	Increased synthesis of \hat{l} ±-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. Journal of Applied Microbiology, 2010, 109, 2160-2172.	3.1	106
3	Differences in Susceptibility to Inactivation of Human Aldehyde Dehydrogenases by Lipid Peroxidation Byproducts. Chemical Research in Toxicology, 2012, 25, 722-729.	3.3	87
4	The Inhibitor Protein (IF1) Promotes Dimerization of the Mitochondrial F1F0-ATP Synthaseâ€. Biochemistry, 2006, 45, 12695-12703.	2.5	86
5	Inhibition of the mitochondrial calcium uniporter by the oxo-bridged dinuclear ruthenium amine complex (Ru360) prevents from irreversible injury in postischemic rat heart. FEBS Journal, 2005, 272, 3477-3488.	4.7	82
6	Reactive oxygen species production induced by ethanol in <i>Saccharomyces cerevisiae</i> increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Research, 2013, 13, 804-819.	2.3	71
7	Modulation of Oxidative Phosphorylation by Mg2+ in Rat Heart Mitochondria. Journal of Biological Chemistry, 1998, 273, 7850-7855.	3.4	57
8	Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells. International Journal of Biochemistry and Cell Biology, 2015, 65, 209-221.	2.8	55
9	A novel 11â€kDa inhibitory subunit in the F ₁ F _O ATP synthase of <i>Paracoccus denitrificans</i> and related αâ€proteobacteria. FASEB Journal, 2010, 24, 599-608.	0.5	50
10	Pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde–alcohol dehydrogenase are essential for energy metabolism under oxidative stress in <i>Entamoebaâ€∫histolytica</i> . FEBS Journal, 2010, 277, 3382-3395.	4.7	46
11	Structural Aspects of Aldehyde Dehydrogenase that Influence Dimerâ^'Tetramer Formationâ€. Biochemistry, 2002, 41, 8229-8237.	2.5	43
12	Characterization ofE. colitetrameric aldehyde dehydrogenases with atypical properties compared to other aldehyde dehydrogenases. Protein Science, 2006, 15, 1387-1396.	7.6	43
13	Malfunctioning of the Iron–Sulfur Cluster Assembly Machinery in Saccharomyces cerevisiae Produces Oxidative Stress via an Iron-Dependent Mechanism, Causing Dysfunction in Respiratory Complexes. PLoS ONE, 2014, 9, e111585.	2.5	42
14	Molecular mechanisms of resistance to heavy metals in the protist <i>Euglena gracilis</i> . Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1365-1378.	1.7	36
15	Enhanced alternative oxidase and antioxidant enzymes under Cd2+ stress in Euglena. Journal of Bioenergetics and Biomembranes, 2008, 40, 227-235.	2.3	35
16	Role of Aldehyde Dehydrogenases in Physiopathological Processes. Chemical Research in Toxicology, 2019, 32, 405-420.	3.3	35
17	Phytochelatin-cadmium-sulfide high-molecular-mass complexes of Euglena gracilis. FEBS Journal, 2006, 273, 5703-5713.	4.7	34
18	Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation. Archives of Toxicology, 2012, 86, 753-766.	4.2	33

#	Article	IF	CITATIONS
19	Functional Role of MrpA in the MrpABCDEFG Na ⁺ /H ⁺ Antiporter Complex from the Archaeon Methanosarcina acetivorans. Journal of Bacteriology, 2017, 199, .	2.2	31
20	Sulfite and membrane energization induce two different active states of the Paracoccus denitrificans F0F1-ATPase. FEBS Journal, 2000, 267, 993-1000.	0.2	28
21	Chromium uptake, retention and reduction in photosynthetic Euglena gracilis. Archives of Microbiology, 2009, 191, 431-440.	2.2	28
22	Accumulation of arsenic, lead, copper, and zinc, and synthesis of phytochelatins by indigenous plants of a mining impacted area. Environmental Science and Pollution Research, 2013, 20, 3946-3955.	5.3	27
23	Characterization of an Aldehyde Dehydrogenase from Euglena gracilis. Journal of Eukaryotic Microbiology, 2006, 53, 36-42.	1.7	26
24	Modulation of 2-Oxoglutarate Dehydrogenase Complex by Inorganic Phosphate, Mg2+, and Other Effectors. Archives of Biochemistry and Biophysics, 2000, 379, 78-84.	3.0	25
25	Metabolic control analysis of the Trypanosoma cruzi peroxide detoxification pathway identifies tryparedoxin as a suitable drug target. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 263-273.	2.4	25
26	Overexpression of the Inhibitor Protein IF1in AS-30D Hepatoma Produces a Higher Association with Mitochondrial F1F0ATP Synthase Compared to Normal Rat Liver: Functional and Cross-Linking Studies. Journal of Bioenergetics and Biomembranes, 2004, 36, 257-264.	2.3	22
27	Substrate Specificity of the 3-Methylcrotonyl Coenzyme A (CoA) and Geranyl-CoA Carboxylases from Pseudomonas aeruginosa. Journal of Bacteriology, 2008, 190, 4888-4893.	2.2	22
28	Aldaâ€1 modulates the kinetic properties of mitochondrial aldehyde dehydrogenase (<scp>ALDH</scp> 2). FEBS Journal, 2016, 283, 3637-3650.	4.7	20
29	The Mitochondrial Membrane Permeability Transition Induced by Inorganic Phosphate or Inorganic Arsenate. A Comparative Study. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 117, 93-99.	1.6	18
30	Tamoxifen, an anticancer drug, is an activator of human aldehyde dehydrogenase 1 <scp>A</scp> 1. Proteins: Structure, Function and Bioinformatics, 2015, 83, 105-116.	2.6	18
31	Activation of ALDH1A1 by omeprazole reduces cell oxidative stress damage. FEBS Journal, 2021, 288, 4064-4080.	4.7	16
32	On the protection by inorganic phosphate of calcium-induced membrane permeability transition. Journal of Bioenergetics and Biomembranes, 1997, 29, 571-577.	2.3	15
33	Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis. Journal of Bioenergetics and Biomembranes, 2011, 43, 519-530.	2.3	15
34	Antiquorum Sensing Activity of Seed Oils from Oleaginous Plants and Protective Effect During Challenge with <i>Chromobacterium violaceum</i> . Journal of Medicinal Food, 2018, 21, 356-363.	1.5	15
35	Role of the C-terminal tail on the quaternary structure of aldehyde dehydrogenases. Chemico-Biological Interactions, 2001, 130-132, 151-160.	4.0	13
36	Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of <i>E. coli</i> lactaldehyde dehydrogenase. Protein Science, 2008, 17, 563-570.	7.6	13

#	Article	IF	CITATIONS
37	Zn-bis-glutathionate is the best co-substrate of the monomeric phytochelatin synthase from the photosynthetic heavy metal-hyperaccumulator Euglena gracilis. Metallomics, 2014, 6, 604.	2.4	13
38	Buthionine sulfoximine is a multitarget inhibitor of trypanothione synthesis in <i>TrypanosomaÂcruzi</i> . FEBS Letters, 2017, 591, 3881-3894.	2.8	12
39	Molecular basis of the unusual catalytic preference for GDP/GTP in <i>Entamoeba histolytica</i> 3â€phosphoglycerate kinase. FEBS Journal, 2009, 276, 2037-2047.	4.7	10
40	A CRAC-like motif in BAX sequence: Relationship with protein insertion and pore activity in liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1888-1895.	2.6	10
41	Oligomycin strengthens the effect of cyclosporin A on mitochondrial permeability transition by inducing phosphate uptake. Cell Biology International, 2005, 29, 551-558.	3.0	9
42	New insights into the halfâ€ofâ€theâ€sites reactivity of human aldehyde dehydrogenase 1A1. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1330-1339.	2.6	9
43	Inhibition of Non-flux-Controlling Enzymes Deters Cancer Glycolysis by Accumulation of Regulatory Metabolites of Controlling Steps. Frontiers in Physiology, 2016, 7, 412.	2.8	9
44	Omeprazole as a potent activator of human cytosolic aldehyde dehydrogenase ALDH1A1. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129451.	2.4	9
45	Piperlonguminine a new mitochondrial aldehyde dehydrogenase activator protects the heart from ischemia/reperfusion injury. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129684.	2.4	9
46	Tamoxifen inhibits mitochondrial membrane damage caused by disulfiram. Biochemistry and Cell Biology, 2017, 95, 556-562.	2.0	7
47	p38 MAPK as a signal transduction component of heavy metals stress in Euglena gracilis. Archives of Microbiology, 2009, 191, 47-54.	2.2	6
48	Antibacterial properties of phenothiazine derivatives against multidrugâ€resistant Acinetobacter baumannii strains. Journal of Applied Microbiology, 2021, 131, 2235-2243.	3.1	6
49	Gene Cloning and Biochemical Characterization of an Alcohol Dehydrogenase from <i>Euglena gracilis</i> ¹ . Journal of Eukaryotic Microbiology, 2008, 55, 554-561.	1.7	5
50	CDPâ€choline circumvents mercuryâ€induced mitochondrial damage and renal dysfunction. Cell Biology International, 2017, 41, 1356-1366.	3.0	5
51	Antivirulence Activity of a Dietary Phytochemical: Hibiscus Acid Isolated from <i>Hibiscus sabdariffa</i> L. Reduces the Virulence of <i>Pseudomonas aeruginosa</i> in a Mouse Infection Model. Journal of Medicinal Food, 2021, 24, 934-943.	1.5	5
52	Effect of intramitochondrial Mg2 on citrulline synthesis in rat liver mitochondria. IUBMB Life, 1997, 41, 179-187.	3.4	4
53	Bacterial Cyclodipeptides Target Signal Pathways Involved in Malignant Melanoma. Frontiers in Oncology, 2020, 10, 1111.	2.8	4
54	Protein acetylation effects on enzyme activity and metabolic pathway fluxes. Journal of Cellular Biochemistry, 2021, , .	2.6	4

#	Article	IF	CITATIONS
55	Enhanced Tolerance to Mercury in a Streptomycin-Resistant Strain of Euglena gracilis. Water, Air, and Soil Pollution, 2011, 216, 51-57.	2.4	3
56	Co-expression of \hat{I}_{\pm} and \hat{I}^2 subunits of the 3-methylcrotonyl-coenzyme A carboxylase from Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 2012, 28, 1185-1191.	3.6	3
57	Structural evidence for the involvement of the residues Ser187 and Tyr422 in substrate recognition in the 3-methylcrotonyl-coenzyme A carboxylase from Pseudomonas aeruginosa. Journal of Biochemistry, 2013, 154, 291-297.	1.7	3
58	The essential role of mitochondria in the consumption of waste-organic matter and production of metabolites of biotechnological interest in Euglena gracilis. Algal Research, 2021, 56, 102302.	4.6	3
59	Octylguanidine ameliorates the damaging effect of mercury on renal functions. Journal of Biochemistry, 2011, 149, 211-217.	1.7	1
60	FruBPase II and ADP-PFK1 are involved in the modulation of carbon flow in the metabolism of carbohydrates in Methanosarcina acetivorans. Archives of Biochemistry and Biophysics, 2019, 669, 39-49.	3.0	1