Moran Benhar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5790953/publications.pdf

Version: 2024-02-01

38 papers 4,099 citations

201674

27

h-index

330143 37 g-index

42 all docs 42 docs citations

times ranked

42

5750 citing authors

#	Article	IF	CITATIONS
1	Gasotransmitters and thiol redox signaling: a focus on regulated cell death. Free Radical Biology and Medicine, 2021, 177, S56.	2.9	O
2	S-nitrosocysteine and glutathione depletion synergize to induce cell death in human tumor cells: Insights into the redox and cytotoxic mechanisms. Free Radical Biology and Medicine, 2020, 160, 566-574.	2.9	3
3	Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Antioxidants, 2020, 9, 309.	5.1	68
4	Opposing effects of polysulfides and thioredoxin on apoptosis through caspase persulfidation. Journal of Biological Chemistry, 2020, 295, 3590-3600.	3.4	20
5	Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metabolism, 2019, 30, 1152-1170.e13.	16.2	236
6	S-Nitrosylation of $\hat{l}\pm 1$ -Antitrypsin Triggers Macrophages Toward Inflammatory Phenotype and Enhances Intra-Cellular Bacteria Elimination. Frontiers in Immunology, 2019, 10, 590.	4.8	13
7	Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radical Biology and Medicine, 2018, 127, 160-164.	2.9	64
8	Application of a Thioredoxin-Trapping Mutant for Analysis of the Cellular Nitrosoproteome. Methods in Enzymology, 2017, 585, 285-294.	1.0	4
9	Nitrosothiol-Trapping-Based Proteomic Analysis of S-Nitrosylation in Human Lung Carcinoma Cells. PLoS ONE, 2017, 12, e0169862.	2.5	18
10	Inhibitory nitrosylation of mammalian thioredoxin reductase 1: Molecular characterization and evidence for its functional role in cellular nitroso-redox imbalance. Free Radical Biology and Medicine, 2016, 97, 375-385.	2.9	30
11	Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. Journal of Clinical Investigation, 2016, 126, 1630-1639.	8.2	139
12	Emerging Roles of Protein S-Nitrosylation in Macrophages and Cancer Cells. Current Medicinal Chemistry, 2016, 23, 2602-2617.	2.4	23
13	Blocking ${ m IL1}\hat{ m I}^2$ Pathway Following Paclitaxel Chemotherapy Slightly Inhibits Primary Tumor Growth but Promotes Spontaneous Metastasis. Molecular Cancer Therapeutics, 2015, 14, 1385-1394.	4.1	60
14	Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents. Free Radical Biology and Medicine, 2015, 79, 138-146.	2.9	30
15	Nitric oxide and the thioredoxin system: a complex interplay in redox regulation. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2476-2484.	2.4	63
16	Proteomic Identification of S-Nitrosylated Proteins in the Parasite Entamoeba histolytica by Resin-Assisted Capture: Insights into the Regulation of the Gal/GalNAc Lectin by Nitric Oxide. PLoS ONE, 2014, 9, e91518.	2.5	24
17	A Substrate Trapping Approach Identifies Proteins Regulated by Reversible S-nitrosylation. Molecular and Cellular Proteomics, 2014, 13, 2573-2583.	3.8	32
18	Suppression of the pro-inflammatory NLRP3/interleukin- $1\hat{l}^2$ pathway in macrophages by the thioredoxin reductase inhibitor auranofin. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3153-3161.	2.4	36

#	Article	IF	Citations
19	Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells. Biochemical Pharmacology, 2013, 85, 977-990.	4.4	33
20	Multilevel Regulation of 2-Cys Peroxiredoxin Reaction Cycle by S-Nitrosylation. Journal of Biological Chemistry, 2013, 288, 11312-11324.	3.4	57
21	Abstract B59: The dual effect of therapy-induced IL-1 \hat{l}^2 expression on tumor progression: Role of tumor-associated macrophages. , 2013, , .		0
22	Analysis of Protein Sâ€Nitrosylation. Current Protocols in Protein Science, 2011, 63, Unit14.6.	2.8	5
23	Increased Adipocyte S-Nitrosylation Targets Anti-lipolytic Action of Insulin. Journal of Biological Chemistry, 2011, 286, 30433-30443.	3.4	45
24	Identification of S-Nitrosylated Targets of Thioredoxin Using a Quantitative Proteomic Approach. Biochemistry, 2010, 49, 6963-6969.	2.5	108
25	Thioredoxin interacting protein (Txnip) is feedback regulator of Sâ€nitrosylation. FASEB Journal, 2010, 24, 904.2.	0.5	0
26	Thioredoxin-interacting Protein (Txnip) Is a Feedback Regulator of S-Nitrosylation. Journal of Biological Chemistry, 2009, 284, 36160-36166.	3.4	73
27	Detection of protein S-nitrosylation with the biotin-switch technique. Free Radical Biology and Medicine, 2009, 46, 119-126.	2.9	267
28	Protein denitrosylation: enzymatic mechanisms and cellular functions. Nature Reviews Molecular Cell Biology, 2009, 10, 721-732.	37.0	450
29	Regulated Protein Denitrosylation by Cytosolic and Mitochondrial Thioredoxins. Science, 2008, 320, 1050-1054.	12.6	492
30	Regulation of \hat{l}^2 -Adrenergic Receptor Signaling by S-Nitrosylation of G-Protein-Coupled Receptor Kinase 2. Cell, 2007, 129, 511-522.	28.9	274
31	Nitrosative Stress in the ER: A New Role for S-Nitrosylation in Neurodegenerative Diseases. ACS Chemical Biology, 2006, $1,355-358$.	3.4	85
32	A central role for S-nitrosylation in apoptosis. Nature Cell Biology, 2005, 7, 645-646.	10.3	106
33	A low molecular weight copper chelator crosses the blood-brain barrier and attenuates experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 2004, 89, 1241-1251.	3.9	113
34	Toward a PKB Inhibitor: Modification of a Selective PKA Inhibitor by Rational Designâ€. Biochemistry, 2002, 41, 10304-10314.	2.5	110
35	Cisplatin-induced activation of the EGF receptor. Oncogene, 2002, 21, 8723-8731.	5.9	131
36	ROS, stressâ€activated kinases and stress signaling in cancer. EMBO Reports, 2002, 3, 420-425.	4.5	553

3

#	ŧ	Article	IF	CITATIONS
3	7	Enhanced ROS Production in Oncogenically Transformed Cells Potentiates c-Jun N-Terminal Kinase and p38 Mitogen-Activated Protein Kinase Activation and Sensitization to Genotoxic Stress. Molecular and Cellular Biology, 2001, 21, 6913-6926.	2.3	294
3	8	Differential Expression Pattern of Rab-GDI Isoforms during the Parotid Gland Secretion Cycle. Experimental Cell Research, 1997, 233, 207-215.	2.6	10