Nir Ohad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5790928/publications.pdf Version: 2024-02-01

Νιρ Ομλη

#	Article	IF	CITATIONS
1	Circall: fast and accurate methodology for discovery of circular RNAs from paired-end RNA-sequencing data. BMC Bioinformatics, 2021, 22, 495.	2.6	8
2	DNA methylation mutants in <i>Physcomitrella patens</i> elucidate individual roles of CG and non-CG methylation in genome regulation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33700-33710.	7.1	21
3	Less fit Lamium amplexicaule plants produce more dispersible seeds. Scientific Reports, 2019, 9, 6299.	3.3	2
4	RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs. Nature Communications, 2019, 10, 1613.	12.8	46
5	Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.	12.6	781
6	The Polycomb group protein CLF emerges as a specific tri-methylase of H3K27 regulating gene expression and development in Physcomitrella patens. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 860-870.	1.9	17
7	A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nature Plants, 2016, 2, 15209.	9.3	116
8	FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 6111-6123.	4.8	16
9	DNA METHYLTRANSFERASE 1 is involved in mCG and mCCG DNA methylation and is essential for sporophyte development in Physcomitrella patens. Plant Molecular Biology, 2015, 88, 387-400.	3.9	45
10	A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of Physcomitrella patens. Plant Molecular Biology, 2014, 84, 719-735.	3.9	46
11	Plant Epigenetics: A Historical Perspective. Signaling and Communication in Plants, 2013, , 1-19.	0.7	2
12	Polycomb-group mediated epigenetic mechanisms through plant evolution. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 395-406.	1.9	49
13	Utilizing Bimolecular Fluorescence Complementation (BiFC) to Assay Protein–Protein Interaction in Plants. Methods in Molecular Biology, 2010, 655, 347-358.	0.9	25
14	Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development (Cambridge), 2009, 136, 2433-2444.	2.5	133
15	Retinoblastoma and Its Binding Partner MSI1 Control Imprinting in Arabidopsis. PLoS Biology, 2008, 6, e194.	5.6	220
16	The Analysis of Protein-Protein Interactions in Plants by Bimolecular Fluorescence Complementation. Plant Physiology, 2007, 145, 1090-1099.	4.8	104
17	Parental conflict overcome. Nature, 2007, 447, 275-276.	27.8	5
18	Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90. Plant Molecular Biology, 2007, 63, 237-255.	3.9	79

Nir Ohad

#	Article	IF	CITATIONS
19	Polycomb Group Complexes Self-Regulate Imprinting of the Polycomb Group Gene MEDEA in Arabidopsis. Current Biology, 2006, 16, 486-492.	3.9	194
20	Maintenance of DNA Methylation during the Arabidopsis Life Cycle Is Essential for Parental Imprinting. Plant Cell, 2006, 18, 1360-1372.	6.6	264
21	Interaction Between Methyl CpG-Binding Protein and Ran GTPase during Cell Division in Tobacco Cultured Cells. Annals of Botany, 2006, 98, 1179-1187.	2.9	35
22	Different Domains Control the Localization and Mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis Nuclei. Plant Cell, 2005, 18, 133-145.	6.6	48
23	FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant Journal, 2004, 37, 707-719.	5.7	229
24	Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant Journal, 2004, 40, 419-427.	5.7	364
25	From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. Trends in Plant Science, 2003, 8, 439-445.	8.8	68
26	Mutations in the FIE and MEA Genes That Encode Interacting Polycomb Proteins Cause Parent-of-Origin Effects on Seed Development by Distinct Mechanisms. Plant Cell, 2000, 12, 2367.	6.6	2
27	Mutations in the <i>>FIE</i> > and <i>>MEA</i> > Genes That Encode Interacting Polycomb Proteins Cause Parent-of-Origin Effects on Seed Development by Distinct Mechanisms. Plant Cell, 2000, 12, 2367-2381.	6.6	231
28	Mutations in <i>FIE</i> , a WD Polycomb Group Gene, Allow Endosperm Development without Fertilization. Plant Cell, 1999, 11, 407-415.	6.6	407
29	Control of fertilization-independent endosperm development by the <i>MEDEA</i> polycomb gene in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4186-4191.	7.1	331
30	A mutation that allows endosperm development without fertilization Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5319-5324.	7.1	374
31	The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 1995, 83, 735-742.	28.9	245
32	Mutations in the D1 Subunit of Photosystem II Distinguish between Quinone and Herbicide Binding Sites. Plant Cell, 1992, 4, 273.	6.6	18
33	Binding affinity of bicarbonate and formate in herbicide-resistant D1 mutants of Synechococcus sp. PCC 7942. Photosynthesis Research, 1992, 34, 397-408.	2.9	20
34	Accelerated Rate of Turnover of the D1 Subunit of Photosystem II is Correlated with Inhibition of Electron Transfer From QA to QB in Cyanobacterial Mutants. , 1992, , 589-596.		2
35	Mutations in the QB-Binding Niche in the D1 Subunit of Photosystem II Impair Electron Transport From QA to QB. , 1992, , 597-602.		2
36	A similar structure of the herbicide binding site in photosystem II of plants and cyanobacteria is demonstrated by site specific mutagenesis of the psbA gene. Photosynthesis Research, 1990, 23, 73-79.	2.9	32

Nir Ohad

#	Article	IF	CITATIONS
37	Amino Acid Substitutions in the D1 Protein of Photosystem II Affect QB-Stabilization and Accelerate Turnover of D1. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 402-407.	1.4	41
38	Additivity in the Contribution to Herbicide Binding of Amino Acid Residues in the D1 Protein of Photosystem II. , 1990, , 2547-2550.		0
39	Predicted effects on herbicide binding of amino acid substitutions in the D1 protein of photosystem II. FEBS Letters, 1989, 243, 161-164.	2.8	26
40	Isolation and Characterization of Herbicide Resistant Mutants in the Cyanobacterium Synechococcus R2. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1987, 42, 758-761.	1.4	32
41	Isolation and Characterization of Herbicide Resistant Mutants in the Cyanobacterium Synechococcus R2. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1987, 42, 758-761.	1.4	2
42	Mutations Resistant to Photosystem II Herbicides. , 1987, , 357-366.		23
43	The Chloroplast-Encoded Type of Herbicide Resistance is a Recessive Trait in Cyanobacteria. , 1987, , 811-814.		8