Maxwell W Terban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5790846/publications.pdf

Version: 2024-02-01

38 papers 1,874 citations

304743 22 h-index 36 g-index

40 all docs

40 docs citations

40 times ranked 3073 citing authors

#	Article	IF	CITATIONS
1	Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2017, 11, 3819-3831.	14.6	246
2	Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates. Chemistry of Materials, 2015, 27, 1432-1441.	6.7	240
3	Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead lodide Perovskite. ACS Energy Letters, 2016, 1, 880-887.	17.4	221
4	Structural Insights into Poly(Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis. Chemistry of Materials, 2019, 31, 7478-7486.	6.7	151
5	Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews, 2022, 122, 1208-1272.	47.7	105
6	Amine-Linked Covalent Organic Frameworks as a Platform for Postsynthetic Structure Interconversion and Pore-Wall Modification. Journal of the American Chemical Society, 2021, 143, 3430-3438.	13.7	95
7	Total scattering reveals the hidden stacking disorder in a 2D covalent organic framework. Chemical Science, 2020, 11, 12647-12654.	7.4	80
8	Cation Exchange Induced Transformation of InP Magic-Sized Clusters. Chemistry of Materials, 2017, 29, 7984-7992.	6.7	67
9	Recent advances in the characterization of amorphous pharmaceuticals by X-ray diffractometry. Advanced Drug Delivery Reviews, 2016, 100, 183-193.	13.7	65
10	Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. Nanoscale, 2018, 10, 4291-4300.	5.6	56
11	Conductivity Mechanism in Ionic 2D Carbon Nitrides: From Hydrated Ion Motion to Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2107061.	21.0	49
12	Stabilization of reactive Co ₄ O ₄ cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11630-11639.	7.1	41
13	Understanding disorder and linker deficiency in porphyrinic zirconium-based metal–organic frameworks by resolving the Zr8O6 cluster conundrum in PCN-221. Nature Communications, 2021, 12, 3099.	12.8	41
14	Towards quantitative treatment of electron pair distribution function. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 532-549.	1.1	38
15	Structures of Hard Phases in Thermoplastic Polyurethanes. Macromolecules, 2016, 49, 7350-7358.	4.8	36
16	Detection and characterization of nanoparticles in suspension at low concentrations using the X-ray total scattering pair distribution function technique. Nanoscale, 2015, 7, 5480-5487.	5.6	35
17	Hollow organic capsules assemble into cellular semiconductors. Nature Communications, 2018, 9, 1957.	12.8	34

Local atomic and magnetic structure of dilute magnetic semiconductor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:

#	Article	IF	Citations
19	Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate–Phosphate Ion Exchange Materials. Inorganic Chemistry, 2017, 56, 8837-8846.	4.0	30
20	Recrystallization, Phase Composition, and Local Structure of Amorphous Lactose from the Total Scattering Pair Distribution Function. Crystal Growth and Design, 2016, 16, 210-220.	3.0	28
21	Anthracene as a Launchpad for a Phosphinidene Sulfide and for Generation of a Phosphorus–Sulfur Material Having the Composition P ₂ S, a Vulcanized Red Phosphorus That Is Yellow. Journal of the American Chemical Society, 2019, 141, 431-440.	13.7	26
22	Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique. Journal of Applied Crystallography, 2017, 50, 741-748.	4.5	24
23	Structure-mining: screening structure models by automated fitting to the atomic pair distribution function over large numbers of models. Acta Crystallographica Section A: Foundations and Advances, 2020, 76, 395-409.	0.1	21
24	Unlocking the structure of mixed amorphous-crystalline ceramic oxide films synthesized under low temperature electromagnetic excitation. Journal of Materials Chemistry A, 2017, 5, 18434-18441.	10.3	20
25	Effect of amorphization method on the physicochemical properties of amorphous sucrose. Journal of Food Engineering, 2019, 243, 125-141.	5.2	18
26	Local Structural Effects Due to Micronization and Amorphization on an HIV Treatment Active Pharmaceutical Ingredient. Molecular Pharmaceutics, 2020, 17, 2370-2389.	4.6	14
27	Cross-examining Polyurethane Nanodomain Formation and Internal Structure. Macromolecules, 2020, 53, 9065-9073.	4.8	13
28	Superionic Conduction in the Plastic Crystal Polymorph of Na ₄ P ₂ S ₆ . ACS Energy Letters, 2022, 7, 1403-1411.	17.4	9
29	pHâ€Responsive Relaxometric Behaviour of Coordination Polymer Nanoparticles Made of a Stable Macrocyclic Gadolinium Chelate. Chemistry - A European Journal, 2016, 22, 13162-13170.	3.3	8
30	Atomic resolution tracking of nerve-agent simulant decomposition and host metal–organic framework response in real space. Communications Chemistry, 2021, 4, .	4.5	8
31	Improving the picture of atomic structure in nonoriented polymer domains using the pair distribution function: A study of polyamide 6. Journal of Polymer Science, 2020, 58, 1843-1866.	3.8	6
32	Fast Water-Assisted Lithium Ion Conduction in Restacked Lithium Tin Sulfide Nanosheets. Chemistry of Materials, 2021, 33, 7337-7349.	6.7	5
33	Synthesis, characterization, and growth mechanism of motifs of ultrathin cobalt-substituted NaFeSi ₂ O ₆ nanowires. CrystEngComm, 2018, 20, 223-236.	2.6	4
34	Investigation of thermal decomposition as a critical factor inhibiting cold crystallization in amorphous sucrose prepared by melt-quenching. Journal of Food Engineering, 2019, 261, 87-99.	5.2	4
35	Controlling desolvation through polymer-assisted grinding. CrystEngComm, 2022, 24, 2305-2313.	2.6	3
36	Local structure determination using total scattering data., 2023,, 222-247.		1

#	Article	IF	CITATIONS
37	A previously unknown cyclic alkanolamine and molecular ranking using the pair distribution function. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 986-995.	1.1	1
38	Pair Distribution Function Analysis and Electrochemical Performance of Mesoporous Carbon Nanomaterials Synthesized Through KOH and ZnCl2 Activation. Tanzania Journal of Science, 2021, 47, 1362-1375.	0.3	0