Vito Rizzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5790294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclodextrin nanosponges as adsorbent material to remove hazardous pollutants from water: The case of ciprofloxacin. Chemical Engineering Journal, 2021, 411, 128514.	12.7	92
2	Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. Science of the Total Environment, 2019, 693, 133620.	8.0	76
3	α-Cyclodextrin encapsulation of supercritical CO2 extracted oleoresins from different plant matrices: A stability study. Food Chemistry, 2016, 199, 684-693.	8.2	62
4	An interesting environmental friendly cleanup: The excellent potential of olive pomace for disperse blue adsorption/desorption from wastewater. Dyes and Pigments, 2017, 140, 480-490.	3.7	62
5	Interaction between industrial textile dyes and cyclodextrins. Dyes and Pigments, 2015, 119, 84-94.	3.7	45
6	Molecular interactions, characterization and photoactivity of Chlorophyll a/chitosan/2-HP-β-cyclodextrin composite films as functional and active surfaces for ROS production. Food Hydrocolloids, 2016, 58, 98-112.	10.7	45
7	One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum Juice: A novel antioxidant agent for future dermatological and cosmetic applications. Journal of Colloid and Interface Science, 2018, 521, 50-61.	9.4	45
8	Heavy metals retention (Pb(II), Cd(II), Ni(II)) from single and multimetal solutions by natural biosorbents from the olive oil milling operations. Chemical Engineering Research and Design, 2018, 114, 79-90.	5.6	44
9	Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications. Materials Science and Engineering C, 2018, 85, 47-56.	7.3	42
10	Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A Review. Cosmetics, 2019, 6, 13.	3.3	42
11	Commercial bentonite clay as low-cost and recyclable "natural―adsorbent for the Carbendazim removal/recover from water: Overview on the adsorption process and preliminary photodegradation considerations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125060.	4.7	42
12	Amino grafted MCM-41 as highly efficient and reversible ecofriendly adsorbent material for the Direct Blue removal from wastewater. Journal of Molecular Liquids, 2019, 273, 435-446.	4.9	41
13	Multifunctional green synthetized gold nanoparticles/chitosan/ellagic acid self-assembly: Antioxidant, sun filter and tyrosinase-inhibitor properties. Materials Science and Engineering C, 2020, 106, 110170.	7.3	39
14	Chitosan Film as Eco-Friendly and Recyclable Bio-Adsorbent to Remove/Recover Diclofenac, Ketoprofen, and Their Mixture from Wastewater. Biomolecules, 2019, 9, 571.	4.0	38
15	Operational parameters affecting the atrazine removal from water by using cyclodextrin based polymers as efficient adsorbents for cleaner technologies. Environmental Technology and Innovation, 2019, 16, 100454.	6.1	36
16	An Alternative Use of Olive Pomace as a Wide-Ranging Bioremediation Strategy to Adsorb and Recover Disperse Orange and Disperse Red Industrial Dyes from Wastewater. Separations, 2017, 4, 29.	2.4	30
17	Biomolecules from snail mucus (<i>Helix aspersa</i>) conjugated gold nanoparticles, exhibiting potential wound healing and anti-inflammatory activity. Soft Matter, 2020, 16, 10876-10888.	2.7	28
18	Detailed investigation of ROS arisen from chlorophyll a /Chitosan based-biofilm. Colloids and Surfaces B: Biointerfaces, 2016, 142, 239-247.	5.0	25

Vito Rizzi

#	Article	IF	CITATIONS
19	Polyamidoamineâ€Based Hydrogel for Removal of Blue and Red Dyes from Wastewater. Advanced Sustainable Systems, 2018, 2, 1700146.	5.3	25
20	Chitosan Biopolymer from Crab Shell as Recyclable Film to Remove/Recover in Batch Ketoprofen from Water: Understanding the Factors Affecting the Adsorption Process. Materials, 2019, 12, 3810.	2.9	24
21	A comprehensive investigation of dye–chitosan blended films for green chemistry applications. Journal of Applied Polymer Science, 2018, 135, 45945.	2.6	22
22	Lead Ion Sorption by Perlite and Reuse of the Exhausted Material in the Construction Field. Applied Sciences (Switzerland), 2018, 8, 1882.	2.5	20
23	A "classic―material for capture and detoxification of emergent contaminants for water purification: The case of tetracycline. Environmental Technology and Innovation, 2020, 19, 100812.	6.1	20
24	Use of cellulose fibers from wheat straw for sustainable cement mortars. Journal of Sustainable Cement-Based Materials, 2019, 8, 161-179.	3.1	19
25	Applicative Study (Part I): The Excellent Conditions to Remove in Batch Direct Textile Dyes (Direct Red,) Tj ETQq Chitosan Films under Different Conditions. Advances in Chemical Engineering and Science, 2014, 04, 454-469	1 1 0.784 0.5	314 rgBT /Ov 18
26	Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. Cosmetics, 2021, 8, 66.	3.3	18
27	Rose Bengal-photosensitized oxidation of 4-thiothymidine in aqueous medium: evidence for the reaction of the nucleoside with singlet state oxygen. Physical Chemistry Chemical Physics, 2015, 17, 26307-26319.	2.8	17
28	Gold-chlorophyll a-hybrid nanoparticles and chlorophyll a/cetyltrimethylammonium chloride self-assembled-suprastructures as novel carriers for chlorophyll a delivery in water medium: Photoactivity and photostability. Colloids and Surfaces B: Biointerfaces, 2018, 161, 555-562.	5.0	17
29	Snail slime-based gold nanoparticles: An interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. Journal of Photochemistry and Photobiology B: Biology, 2021, 224, 112309.	3.8	17
30	pH-related features and photostability of 4-thiothymidine in aqueous solution: an investigation by UV-visible, NMR and FTIR-ATR spectroscopies and by electrospray ionization mass spectrometry. RSC Advances, 2014, 4, 48804-48814.	3.6	14
31	Plasma generated RONS in cell culture medium for in vitro studies of eukaryotic cells on Tissue Engineering scaffolds. Plasma Processes and Polymers, 2017, 14, 1700014.	3.0	13
32	Thermodynamic and kinetic investigation of heavy metals sorption in packed bed columns by recycled lignocellulosic materials from olive oil production. Chemical Engineering Communications, 2019, 206, 1715-1730.	2.6	13
33	Use of Chènevotte, a Valuable Co-Product of Industrial Hemp Fiber, as Adsorbent for Pollutant Removal. Part I: Chemical, Microscopic, Spectroscopic and Thermogravimetric Characterization of Raw and Modified Samples. Molecules, 2021, 26, 4574.	3.8	13
34	Removal from wastewater and recycling of azo textile dyes by alginate-chitosan beads. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 1835-1850.	0.1	13
35	The "End Life―of the Grape Pomace Waste Become the New Beginning: The Development of a Virtuous Cycle for the Green Synthesis of Gold Nanoparticles and Removal of Emerging Contaminants from Water. Antioxidants, 2022, 11, 994.	5.1	13
36	Operational parameters affecting the removal and recycling of direct blue industrial dye from wastewater using bleached oil mill waste as alternative adsorbent material. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 1560-1572.	0.1	12

Vito Rizzi

#	Article	IF	CITATIONS
37	From agricultural wastes to a resource: Kiwi Peels, as long-lasting, recyclable adsorbent, to remove emerging pollutants from water. The case of Ciprofloxacin removal. Sustainable Chemistry and Pharmacy, 2022, 29, 100749.	3.3	12
38	Investigation of air-DBD effects on biological liquids for in vitro studies on eukaryotic cells. Clinical Plasma Medicine, 2015, 3, 62-71.	3.2	11
39	Porous Waste Glass for Lead Removal in Packed Bed Columns and Reuse in Cement Conglomerates. Materials, 2019, 12, 94.	2.9	11
40	Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes, 2021, 9, 205.	2.8	11
41	Development of Spirulina sea-weed raw extract/polyamidoamine hydrogel system as novel platform in photodynamic therapy: Photostability and photoactivity of chlorophyll a. Materials Science and Engineering C, 2021, 119, 111593.	7.3	9
42	Characterization of Reactive Oxygen/Nitrogen Species Produced in PBS and DMEM by Air DBD Plasma Treatments. Plasma Medicine, 2016, 6, 13-19.	0.6	8
43	Porous Alumosilicate Aggregate as Lead Ion Sorbent in Wastewater Treatments. Separations, 2017, 4, 25.	2.4	8
44	Amino-grafted mesoporous MCM-41 and SBA-15 recyclable adsorbents: Desert-rose-petals-like SBA-15 type as the most efficient to remove azo textile dyes and their mixture from water. Sustainable Materials and Technologies, 2020, 26, e00231.	3.3	8
45	Untargeted analysis of pure snail slime and snail slimeâ€induced Au nanoparticles metabolome with MALDI FTâ€iCR MS. Journal of Mass Spectrometry, 2021, 56, e4722.	1.6	8
46	Evaluation of the hydraulic and hydrodynamic parameters influencing photo-catalytic degradation of bio-persistent pollutants in a pilot plant. Chemical Engineering Communications, 2019, 206, 1286-1296.	2.6	7
47	Chitosan film as recyclable adsorbent membrane to remove/recover hazardous pharmaceutical pollutants from water: the case of the emerging pollutant Furosemide. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 1-12.	1.7	7
48	Cyclodextrin polymers and salts: An Eco-Friendly combination to modulate the removal of sulfamethoxazole from water and its release. Chemosphere, 2021, 283, 131238.	8.2	7
49	Potential of 4-thiothymidine as a molecular probe for H2O2 in systems related to PhotoDynamic therapy: A structuristic and mechanistic insight by UV–visible and FTIR-ATR spectroscopies and by ElectroSpray ionization mass spectrometry. Journal of Molecular Liquids, 2018, 264, 398-409.	4.9	5
50	A comprehensive investigation of amino grafted mesoporous silica nanoparticles supramolecular assemblies to host photoactive chlorophyll a in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 149-158.	3.9	5
51	Interactions between 4-thiothymidine and water-soluble cyclodextrins: Evidence for supramolecular structures in aqueous solutions. Beilstein Journal of Organic Chemistry, 2016, 12, 549-563.	2.2	4
52	Ionic‣iquid Controlled Nitration of Double Bond: Highly Selective Synthesis of Nitrostyrenes and Benzonitriles. European Journal of Organic Chemistry, 2020, 2020, 6012-6018.	2.4	4
53	Removal of an Azo Textile Dye from Wastewater by Cyclodextrin-Epichlorohydrin Polymers. , 0, , .		2
54	Reactivity of 4â€ŧhiothymidine with <scp>F</scp> enton reagent investigated by <scp>UV</scp> â€visible spectroscopy and electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2019, 54, 389-401.	1.6	2

#	Article	IF	CITATIONS
55	Green Procedure for One-Pot Synthesis of Azelaic Acid Derivatives Using Metal Catalysis. Recent Innovations in Chemical Engineering, 2019, 11, 185-191.	0.4	2