List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5788619/publications.pdf Version: 2024-02-01

LALIDA FARDIS

#	Article	lF	CITATIONS
1	SERS Biosensors. , 2022, , 81-123.		0
2	Understanding and detecting viruses with surface-enhanced Raman Spectroscopy. , 2021, , .		0
3	Bioconjugation strategies toward efficient intracellular nanoparticle probes. , 2021, , .		1
4	(Invited) Controlling Synthesis and Functionalization of Anisotropic Gold Nanoparticles for Applications in Biology. ECS Meeting Abstracts, 2021, MA2021-01, 913-913.	0.0	0
5	Rapid SERS Quantification of Trace Fentanyl Laced in Recreational Drugs with a Portable Raman Module. Analytical Chemistry, 2021, 93, 9373-9382.	6.5	34
6	Development of coronary dysfunction in adult progeny after maternal engineered nanomaterial inhalation during gestation. Scientific Reports, 2021, 11, 19374.	3.3	2
7	Highly Tunable Growth and Etching of Silica Shells on Surfactantâ€Free Gold Nanostars. ChemNanoMat, 2020, 6, 53-57.	2.8	12
8	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
9	Quantifying and optimizing photocurrent via optical modeling of gold nanostar-, nanorod-, and dimer-decorated MoS2 and MoTe2. Journal of Chemical Physics, 2020, 152, 014705.	3.0	5
10	Gold Nanostars in Biology and Medicine: Understanding Physicochemical Properties to Broaden Applicability. Journal of Physical Chemistry C, 2020, 124, 26540-26553.	3.1	34
11	Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Particle and Fibre Toxicology, 2020, 17, 55.	6.2	181
12	SERS Nanoprobe for Intracellular Monitoring of Viral Mutations. Journal of Physical Chemistry C, 2020, 124, 3211-3217.	3.1	31
13	(Invited) Understanding the Role of Protein Corona on Oligonucleotide Recognition Efficiency in Fluorescent Flares. ECS Meeting Abstracts, 2020, MA2020-01, 1094-1094.	0.0	0
14	Multipolar and bulk modes: fundamentals of single-particle plasmonics through the advances in electron and photon techniques. Nanophotonics, 2020, 9, 4433-4446.	6.0	3
15	Applications of melting gels. Journal of Sol-Gel Science and Technology, 2019, 89, 66-77.	2.4	9
16	Gold nanoparticles in melting gels. Journal of Sol-Gel Science and Technology, 2019, 91, 189-197.	2.4	6
17	Identification and quantification of gold engineered nanomaterials and impaired fluid transfer across the rat placenta via ex vivo perfusion. Biomedicine and Pharmacotherapy, 2019, 117, 109148.	5.6	13
18	Impact of Protein Corona in Nanoflare-Based Biomolecular Detection and Quantification. Bioconjugate Chemistry, 2019, 30, 2555-2562.	3.6	13

#	Article	IF	CITATIONS
19	Colloidal plasmonic nanostar antennas with wide range resonance tunability. Nanoscale, 2019, 11, 18662-18671.	5.6	31
20	Enhancing hot electron generation and injection in the near infrared via rational design and controlled synthesis of TiO2–gold nanostructures. Faraday Discussions, 2019, 214, 341-351.	3.2	16
21	Understanding the role of AgNO ₃ concentration and seed morphology in the achievement of tunable shape control in gold nanostars. Nanoscale, 2019, 11, 2946-2958.	5.6	87
22	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	3.2	5
23	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	3.2	34
24	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	3.2	9
25	A Review on Surface-Enhanced Raman Scattering. Biosensors, 2019, 9, 57.	4.7	545
26	Effect of Gestational Age on Maternofetal Vascular Function Following Single Maternal Engineered Nanoparticle Exposure. Cardiovascular Toxicology, 2019, 19, 321-333.	2.7	17
27	Improved Precision in Surface-Enhanced Raman Scattering Quantification of Analyte through Dual-Modality Multisite Sensing. Analytical Chemistry, 2019, 91, 4323-4330.	6.5	4
28	Surface-Enhanced Raman Spectroscopy: Principles, Substrates, and Applications. , 2018, , 89-164.		13
29	Interface and Bulk Standing Waves Drive the Coupling of Plasmonic Nanostar Antennas. Journal of Physical Chemistry C, 2018, 122, 28949-28957.	3.1	14
30	SERS-Based Quantification of PSMA in Tissue Microarrays Allows Effective Stratification of Patients with Prostate Cancer. ACS Omega, 2018, 3, 16784-16794.	3.5	13
31	TiO2 on Gold Nanostars Enhances Photocatalytic Water Reduction in the Near-Infrared Regime. CheM, 2018, 4, 2140-2153.	11.7	70
32	SERS-Based Quantification of Biomarker Expression at the Single Cell Level Enabled by Gold Nanostars and Truncated Aptamers. Bioconjugate Chemistry, 2018, 29, 2970-2981.	3.6	48
33	Gold Nanostar Assays for Oncology and Virology. Journal of Self-Assembly and Molecular Electronics (SAME), 2018, 6, 1-1.	0.0	0
34	A new paradigm for gold nanostars: synthesis, characterization, modeling, and biomedical applications (Conference Presentation). , 2018, , .		0
35	A closer look at the physical and optical properties of gold nanostars: an experimental and computational study. Nanoscale, 2017, 9, 3766-3773.	5.6	47
36	Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry. Bioconjugate Chemistry, 2017, 28, 449-460.	3.6	90

#	Article	IF	CITATIONS
37	SERS Tags: The Next Promising Tool for Personalized Cancer Detection?. ChemNanoMat, 2016, 2, 249-258.	2.8	81
38	Controlled dispersion of polystyreneâ€capped A u nanoparticles in P 3 HT : PC 61 BM and consequences upon active layer nanostructure. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 709-720.	2.1	1
39	Noble Metal Nanoparticles as SERS Tags: Fundamentals and Biomedical Applications. , 2016, , 67-101.		0
40	Shaping Gold Nanostar Electric Fields for Surface-Enhanced Raman Spectroscopy Enhancement via Silica Coating and Selective Etching. Journal of Physical Chemistry C, 2016, 120, 20749-20758.	3.1	66
41	Coordination Geometry and Oxidation State Requirements of Corner-Sharing MnO ₆ Octahedra for Water Oxidation Catalysis: An Investigation of Manganite (γ-MnOOH). ACS Catalysis, 2016, 6, 2089-2099.	11.2	156
42	Gold-based SERS tags for biomedical imaging. Journal of Optics (United Kingdom), 2015, 17, 114002.	2.2	70
43	SERS-based approaches toward genetic profiling. Bioanalysis, 2015, 7, 263-278.	1.5	12
44	Short- and longer-term predictive capacity of the Multidimensional Prognostic Index: The timing of the assessment is of no consequence. Archives of Gerontology and Geriatrics, 2015, 61, 458-463.	3.0	6
45	Carboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks. Analyst, The, 2015, 140, 5971-5980.	3.5	18
46	Plasmonic properties of regiospecific core–satellite assemblies of gold nanostars and nanospheres. Physical Chemistry Chemical Physics, 2015, 17, 21133-21142.	2.8	51
47	Ligand Exchange on Gold Nanorods: Going Back to the Future. Particle and Particle Systems Characterization, 2014, 31, 819-838.	2.3	77
48	Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale, 2014, 6, 8891-8899.	5.6	219
49	Gold Nanowire and Nanorod Plasmonic Mechanisms for Increasing Ultra-Thin Organic Photovoltaic Active Layer Absorption. Plasmonics, 2014, 9, 1283-1301.	3.4	5
50	Gold nanorod enhanced organic photovoltaics: The importance of morphology effects. Organic Electronics, 2014, 15, 1448-1457.	2.6	25
51	Time-Dependent Susceptibility of the Growth of Gold Nanorods to the Addition of a Cosurfactant. Chemistry of Materials, 2013, 25, 4772-4780.	6.7	36
52	Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules. Nature Chemistry, 2013, 5, 36-41.	13.6	68
53	Growth Mechanism of Gold Nanorods. Chemistry of Materials, 2013, 25, 555-563.	6.7	186
54	Dimeric Gold Nanoparticle Assemblies as Tags for SERSâ€Based Cancer Detection. Advanced Healthcare Materials, 2013, 2, 1370-1376.	7.6	91

#	Article	IF	CITATIONS
55	Multiplex optical sensing with surface-enhanced Raman scattering: A critical review. Analytica Chimica Acta, 2012, 745, 10-23.	5.4	130
56	Bottom-up optimization of SERS hot-spots. Chemical Communications, 2012, 48, 9346.	4.1	17
57	Understanding nanoparticle assembly: A simulation approach to SERS-active dimers. Journal of Colloid and Interface Science, 2012, 369, 134-143.	9.4	9
58	High Sensitivity Surface-Enhanced Raman Scattering in Solution Using Engineered Silver Nanosphere Dimers. Journal of Physical Chemistry C, 2011, 115, 15900-15907.	3.1	20
59	Au/SBA-15-Based Robust and Convenient-to-Use Nanopowder Material for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 22810-22817.	3.1	28
60	<i>Anti</i> tags: Nanostructured Tools for Developing SERSâ€Based ELISA Analogs. Advanced Materials, 2010, 22, 4954-4958.	21.0	44
61	Aptatagâ€Based Multiplexed Assay for Protein Detection by Surfaceâ€Enhanced Raman Spectroscopy. Small, 2010, 6, 1550-1557.	10.0	48
62	Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion. Journal of Physical Chemistry C, 2009, 113, 13622-13629.	3.1	160
63	SERS Aptatags: New Responsive Metallic Nanostructures for Heterogeneous Protein Detection by Surface Enhanced Raman Spectroscopy. Advanced Functional Materials, 2008, 18, 2518-2525.	14.9	81
64	A Heterogeneous PNA-Based SERS Method for DNA Detection. Journal of the American Chemical Society, 2007, 129, 6086-6087.	13.7	134
65	Gold Nanoclusters Protected by Conformationally Constrained Peptides. Journal of the American Chemical Society, 2006, 128, 326-336.	13.7	125
66	Effect of Peptide Ligand Dipole Moments on the Redox Potentials of Au38 and Au140 Nanoparticles. Langmuir, 2006, 22, 10584-10589.	3.5	63