Laura Fabris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5788619/publications.pdf

Version: 2024-02-01

66 papers 5,583 citations

30 h-index 58 g-index

72 all docs 72 docs citations

times ranked

72

7637 citing authors

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
2	A Review on Surface-Enhanced Raman Scattering. Biosensors, 2019, 9, 57.	4.7	545
3	Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale, 2014, 6, 8891-8899.	5.6	219
4	Growth Mechanism of Gold Nanorods. Chemistry of Materials, 2013, 25, 555-563.	6.7	186
5	Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Particle and Fibre Toxicology, 2020, 17, 55.	6.2	181
6	Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion. Journal of Physical Chemistry C, 2009, 113, 13622-13629.	3.1	160
7	Coordination Geometry and Oxidation State Requirements of Corner-Sharing MnO ₆ Octahedra for Water Oxidation Catalysis: An Investigation of Manganite (γ-MnOOH). ACS Catalysis, 2016, 6, 2089-2099.	11.2	156
8	A Heterogeneous PNA-Based SERS Method for DNA Detection. Journal of the American Chemical Society, 2007, 129, 6086-6087.	13.7	134
9	Multiplex optical sensing with surface-enhanced Raman scattering: A critical review. Analytica Chimica Acta, 2012, 745, 10-23.	5.4	130
10	Gold Nanoclusters Protected by Conformationally Constrained Peptides. Journal of the American Chemical Society, 2006, 128, 326-336.	13.7	125
11	Dimeric Gold Nanoparticle Assemblies as Tags for SERSâ€Based Cancer Detection. Advanced Healthcare Materials, 2013, 2, 1370-1376.	7.6	91
12	Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry. Bioconjugate Chemistry, 2017, 28, 449-460.	3.6	90
13	Understanding the role of AgNO ₃ concentration and seed morphology in the achievement of tunable shape control in gold nanostars. Nanoscale, 2019, 11, 2946-2958.	5.6	87
14	SERS Aptatags: New Responsive Metallic Nanostructures for Heterogeneous Protein Detection by Surface Enhanced Raman Spectroscopy. Advanced Functional Materials, 2008, 18, 2518-2525.	14.9	81
15	SERS Tags: The Next Promising Tool for Personalized Cancer Detection?. ChemNanoMat, 2016, 2, 249-258.	2.8	81
16	Ligand Exchange on Gold Nanorods: Going Back to the Future. Particle and Particle Systems Characterization, 2014, 31, 819-838.	2.3	77
17	Gold-based SERS tags for biomedical imaging. Journal of Optics (United Kingdom), 2015, 17, 114002.	2.2	70
18	TiO2 on Gold Nanostars Enhances Photocatalytic Water Reduction in the Near-Infrared Regime. CheM, 2018, 4, 2140-2153.	11.7	70

#	Article	IF	CITATIONS
19	Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules. Nature Chemistry, 2013, 5, 36-41.	13.6	68
20	Shaping Gold Nanostar Electric Fields for Surface-Enhanced Raman Spectroscopy Enhancement via Silica Coating and Selective Etching. Journal of Physical Chemistry C, 2016, 120, 20749-20758.	3.1	66
21	Effect of Peptide Ligand Dipole Moments on the Redox Potentials of Au38 and Au140 Nanoparticles. Langmuir, 2006, 22, 10584-10589.	3.5	63
22	Plasmonic properties of regiospecific core–satellite assemblies of gold nanostars and nanospheres. Physical Chemistry Chemical Physics, 2015, 17, 21133-21142.	2.8	51
23	Aptatagâ€Based Multiplexed Assay for Protein Detection by Surfaceâ€Enhanced Raman Spectroscopy. Small, 2010, 6, 1550-1557.	10.0	48
24	SERS-Based Quantification of Biomarker Expression at the Single Cell Level Enabled by Gold Nanostars and Truncated Aptamers. Bioconjugate Chemistry, 2018, 29, 2970-2981.	3.6	48
25	A closer look at the physical and optical properties of gold nanostars: an experimental and computational study. Nanoscale, 2017, 9, 3766-3773.	5.6	47
26	<i>Anti</i> tags: Nanostructured Tools for Developing SERSâ€Based ELISA Analogs. Advanced Materials, 2010, 22, 4954-4958.	21.0	44
27	Time-Dependent Susceptibility of the Growth of Gold Nanorods to the Addition of a Cosurfactant. Chemistry of Materials, 2013, 25, 4772-4780.	6.7	36
28	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	3.2	34
29	Gold Nanostars in Biology and Medicine: Understanding Physicochemical Properties to Broaden Applicability. Journal of Physical Chemistry C, 2020, 124, 26540-26553.	3.1	34
30	Rapid SERS Quantification of Trace Fentanyl Laced in Recreational Drugs with a Portable Raman Module. Analytical Chemistry, 2021, 93, 9373-9382.	6.5	34
31	Colloidal plasmonic nanostar antennas with wide range resonance tunability. Nanoscale, 2019, 11, 18662-18671.	5.6	31
32	SERS Nanoprobe for Intracellular Monitoring of Viral Mutations. Journal of Physical Chemistry C, 2020, 124, 3211-3217.	3.1	31
33	Au/SBA-15-Based Robust and Convenient-to-Use Nanopowder Material for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 22810-22817.	3.1	28
34	Gold nanorod enhanced organic photovoltaics: The importance of morphology effects. Organic Electronics, 2014, 15, 1448-1457.	2.6	25
35	High Sensitivity Surface-Enhanced Raman Scattering in Solution Using Engineered Silver Nanosphere Dimers. Journal of Physical Chemistry C, 2011, 115, 15900-15907.	3.1	20
36	Carboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks. Analyst, The, 2015, 140, 5971-5980.	3.5	18

#	Article	IF	CITATIONS
37	Bottom-up optimization of SERS hot-spots. Chemical Communications, 2012, 48, 9346.	4.1	17
38	Effect of Gestational Age on Maternofetal Vascular Function Following Single Maternal Engineered Nanoparticle Exposure. Cardiovascular Toxicology, 2019, 19, 321-333.	2.7	17
39	Enhancing hot electron generation and injection in the near infrared via rational design and controlled synthesis of TiO2–gold nanostructures. Faraday Discussions, 2019, 214, 341-351.	3.2	16
40	Interface and Bulk Standing Waves Drive the Coupling of Plasmonic Nanostar Antennas. Journal of Physical Chemistry C, 2018, 122, 28949-28957.	3.1	14
41	Surface-Enhanced Raman Spectroscopy: Principles, Substrates, and Applications. , 2018, , 89-164.		13
42	SERS-Based Quantification of PSMA in Tissue Microarrays Allows Effective Stratification of Patients with Prostate Cancer. ACS Omega, 2018, 3, 16784-16794.	3.5	13
43	Identification and quantification of gold engineered nanomaterials and impaired fluid transfer across the rat placenta via ex vivo perfusion. Biomedicine and Pharmacotherapy, 2019, 117, 109148.	5.6	13
44	Impact of Protein Corona in Nanoflare-Based Biomolecular Detection and Quantification. Bioconjugate Chemistry, 2019, 30, 2555-2562.	3.6	13
45	SERS-based approaches toward genetic profiling. Bioanalysis, 2015, 7, 263-278.	1.5	12
46	Highly Tunable Growth and Etching of Silica Shells on Surfactantâ€Free Gold Nanostars. ChemNanoMat, 2020, 6, 53-57.	2.8	12
47	Understanding nanoparticle assembly: A simulation approach to SERS-active dimers. Journal of Colloid and Interface Science, 2012, 369, 134-143.	9.4	9
48	Applications of melting gels. Journal of Sol-Gel Science and Technology, 2019, 89, 66-77.	2.4	9
49	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	3.2	9
50	Short- and longer-term predictive capacity of the Multidimensional Prognostic Index: The timing of the assessment is of no consequence. Archives of Gerontology and Geriatrics, 2015, 61, 458-463.	3.0	6
51	Gold nanoparticles in melting gels. Journal of Sol-Gel Science and Technology, 2019, 91, 189-197.	2.4	6
52	Gold Nanowire and Nanorod Plasmonic Mechanisms for Increasing Ultra-Thin Organic Photovoltaic Active Layer Absorption. Plasmonics, 2014, 9, 1283-1301.	3.4	5
53	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	3.2	5
54	Quantifying and optimizing photocurrent via optical modeling of gold nanostar-, nanorod-, and dimer-decorated MoS2 and MoTe2. Journal of Chemical Physics, 2020, 152, 014705.	3.0	5

#	Article	IF	CITATIONS
55	Improved Precision in Surface-Enhanced Raman Scattering Quantification of Analyte through Dual-Modality Multisite Sensing. Analytical Chemistry, 2019, 91, 4323-4330.	6.5	4
56	Multipolar and bulk modes: fundamentals of single-particle plasmonics through the advances in electron and photon techniques. Nanophotonics, 2020, 9, 4433-4446.	6.0	3
57	Development of coronary dysfunction in adult progeny after maternal engineered nanomaterial inhalation during gestation. Scientific Reports, 2021, 11, 19374.	3.3	2
58	Controlled dispersion of polystyreneâ€capped A u nanoparticles in P 3 HT : PC 61 BM and consequences upon active layer nanostructure. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 709-720.	2.1	1
59	Bioconjugation strategies toward efficient intracellular nanoparticle probes. , 2021, , .		1
60	Noble Metal Nanoparticles as SERS Tags: Fundamentals and Biomedical Applications. , 2016, , 67-101.		0
61	Understanding and detecting viruses with surface-enhanced Raman Spectroscopy. , 2021, , .		O
62	(Invited) Controlling Synthesis and Functionalization of Anisotropic Gold Nanoparticles for Applications in Biology. ECS Meeting Abstracts, 2021, MA2021-01, 913-913.	0.0	0
63	Gold Nanostar Assays for Oncology and Virology. Journal of Self-Assembly and Molecular Electronics (SAME), 2018, 6, 1-1.	0.0	0
64	A new paradigm for gold nanostars: synthesis, characterization, modeling, and biomedical applications (Conference Presentation). , 2018 , , .		0
65	(Invited) Understanding the Role of Protein Corona on Oligonucleotide Recognition Efficiency in Fluorescent Flares. ECS Meeting Abstracts, 2020, MA2020-01, 1094-1094.	0.0	0
66	SERS Biosensors., 2022,, 81-123.		0