
Pooran M Gaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787243/publications.pdf Version: 2024-02-01

1.8

22

#	Article	IF	CITATIONS
1	Impact of heat and drought stresses on grain nutrient content in chickpea: Genome-wide marker-trait associations for protein, Fe and Zn. Environmental and Experimental Botany, 2022, 194, 104688.	4.2	27
2	Genetic variation in <i>CaTIFY4b</i> contributes to drought adaptation in chickpea. Plant Biotechnology Journal, 2022, 20, 1701-1715.	8.3	23
3	Screening of heatâ€ŧolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships. , 2021, 4, e20211.		3
4	Molecular mapping of dry root rot resistance genes in chickpea (Cicer arietinum L.). Euphytica, 2021, 217, 1.	1.2	8
5	MAGIC lines in chickpea: development and exploitation of genetic diversity. Euphytica, 2021, 217, 1.	1.2	6
6	Translational Chickpea Genomics Consortium to Accelerate Genetic Gains in Chickpea (Cicer arietinum) Tj ETQq0 (0.0_rgBT 3.5	Oyerlock 10
7	Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop Journal, 2020, 8, 164-169.	5.2	64
8	Baseline status and effect of genotype, environment and genotype × environment interactions on iron and zinc content in Indian chickpeas (Cicer arietinum L.). Euphytica, 2020, 216, 1.	1.2	9
9	Differential heat sensitivity of two coolâ€season legumes, chickpea and lentil, at the reproductive stage, is associated with responses in pollen function, photosynthetic ability and oxidative damage. Journal of Agronomy and Crop Science, 2020, 206, 734-758.	3.5	14
10	Integrating genomics for chickpea improvement: achievements and opportunities. Theoretical and Applied Genetics, 2020, 133, 1703-1720.	3.6	82
11	Strategies for Effective Use of Genomic Information in Crop Breeding Programs Serving Africa and South Asia. Frontiers in Plant Science, 2020, 11, 353.	3.6	33
12	Genomics, genetics and breeding of tropical legumes for better livelihoods of smallholder farmers. Plant Breeding, 2019, 138, 487-499.	1.9	28
13	Inheritance and relationships of flowering time and seed size in kabuli chickpea. Euphytica, 2019, 215, 1.	1.2	15
14	Exploring the Genetic Cipher of Chickpea (Cicer arietinum L.) Through Identification and Multi-environment Validation of Resistant Sources Against Fusarium Wilt (Fusarium oxysporum f. sp.) Tj ETQq0 0 ()3: g BT /Ov	vestock 10 T
15	Co-localization of genomic regions associated with seed morphology and composition in a desi chickpea (Cicer arietinum L.) population varying in seed protein concentration. Theoretical and Applied Genetics, 2019, 132, 1263-1281.	3.6	15

16 CGIAR Operations under the Plant Treaty Framework. Crop Science, 2019, 59, 819-832.

17	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	21.4	219
18	Association of flowering time with phenological and productivity traits in chickpea. Euphytica, 2019, 215, 1.	1.2	7

#	Article	IF	CITATIONS
19	Changing Plant Architecture and Density can Increase Chickpea Productivity and Facilitate for Mechanical Harvesting. International Journal of Plant Production, 2019, 13, 193-202.	2.2	9
20	Functional Dissection of the Chickpea (Cicer arietinum L.) Stay-Green Phenotype Associated with Molecular Variation at an Ortholog of Mendel's I Gene for Cotyledon Color: Implications for Crop Production and Carotenoid Biofortification. International Journal of Molecular Sciences, 2019, 20, 5562.	4.1	13
21	Integrated breeding approaches for improving drought and heat adaptation in chickpea (<i>Cicer) Tj ETQq1 1 0.7</i>	′84314 rg 1.9	BT_/Overloc
22	Super Annigeri 1 and improved JG 74: two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Molecular Breeding, 2019, 39, 2.	2.1	62
23	Genetic studies for seed size and grain yield traits in kabuli chickpea. Euphytica, 2018, 214, 1.	1.2	4
24	Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Research, 2018, 223, 93-104.	5.1	38
25	Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Communications, 2018, 9, 649.	12.8	142
26	Identification of QTLs for resistance to Fusarium wilt and Ascochyta blight in a recombinant inbred population of chickpea (Cicer arietinum L.). Euphytica, 2018, 214, 1.	1.2	40
27	Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica, 2018, 214, 1.	1.2	28
28	Breeding Progress for Grain Yield and Yield Related Characters of Kabuli Chickpea (Cicer arietinum L.) in Ethiopia Using Regression Analysis. Journal of Agricultural Science, 2018, 10, 195.	0.2	4
29	Molecular Mapping of QTLs for Heat Tolerance in Chickpea. International Journal of Molecular Sciences, 2018, 19, 2166.	4.1	73
30	Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biology, 2018, 18, 29.	3.6	59
31	Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Scientific Reports, 2018, 8, 11701.	3.3	61
32	Temperature sensitivity of food legumes: a physiological insight. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	33
33	Genotype, environment and their interaction influence seed quality traits in chickpea (Cicer arietinum) Tj ETQq1	1 9.78431	14 rgBT /Ove
34	Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop and Pasture Science, 2017, 68, 823.	1.5	61
35	Impact of Genomics on Chickpea Breeding. Compendium of Plant Genomes, 2017, , 125-134.	0.5	3
36	Botany of Chickpea. Compendium of Plant Genomes, 2017, , 13-24.	0.5	1

#	Article	IF	CITATIONS
37	Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea (Cicer arietinum L.). Frontiers in Plant Science, 2017, 8, 1140.	3.6	48
38	Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. Frontiers in Plant Science, 2017, 8, 1658.	3.6	146
39	Variation in Seedâ€Quality Traits of Chickpea and Their Correlation to Raffinose Family Oligosaccharides Concentrations. Crop Science, 2017, 57, 1594-1602.	1.8	3
40	Genotype by environment interaction on yield stability of desi type chickpea (Cicer arietinum L.) at major chickpea producing areas of Ethiopia. Australian Journal of Crop Science, 2017, 11, 212-219.	0.3	9
41	Genetic diversity for yield and its component traits in chickpea (<i>Cicer arietinum</i> L.). Electronic Journal of Plant Breeding, 2017, 8, 89.	0.1	1
42	Heterosis for Nitrogen Fixation and Seed Yield and Yield Components in Chickpea (Cicer arietinum L.). International Journal of Agricultural Sustainability, 2017, 4, 50-57.	0.2	1
43	Tolerance to post-emergence herbicide Imazethapyr in chickpea. Indian Journal of Genetics and Plant Breeding, 2017, 77, 401.	0.5	3
44	Genome-Enabled Prediction Models for Yield Related Traits in Chickpea. Frontiers in Plant Science, 2016, 7, 1666.	3.6	127
45	QTLâ€seq for rapid identification of candidate genes for 100â€seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnology Journal, 2016, 14, 2110-2119.	8.3	177
46	Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Scientific Reports, 2016, 6, 38636.	3.3	77
47	Inheritance of protein content and its relationships with seed size, grain yield and other traits in chickpea. Euphytica, 2016, 209, 253-260.	1.2	38
48	Satellite imagery and household survey for tracking chickpea adoption in Andhra Pradesh, India. International Journal of Remote Sensing, 2016, 37, 1955-1972.	2.9	6
49	Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biology, 2016, 16, 10.	3.6	101
50	Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds. Phytochemistry, 2016, 125, 88-98.	2.9	44
51	First report of root rot caused by <i>Pythium</i> spp. on chickpea in South Africa. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 379-380.	0.6	3
52	Vernalization response in chickpea is controlled by a major QTL. Euphytica, 2016, 207, 453-461.	1.2	31
53	Prioritization of candidate genes in "QTL-hotspot―region for drought tolerance in chickpea (Cicer) Tj ETC	2q1 1.0.784	314 rgBT /Ove
54	Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (C	icer) Ţj ĘTQo	 0 0 0 rgBT /C

#	Article	IF	CITATIONS
55	Field response of chickpea (Cicer arietinum L.) to high temperature. Field Crops Research, 2015, 172, 59-71.	5.1	46
56	Translational Genomics in Agriculture: Some Examples in Grain Legumes. Critical Reviews in Plant Sciences, 2015, 34, 169-194.	5.7	83
57	Genotyping-by-sequencing based intra-specific genetic map refines a ''QTL-hotspot―region for drought tolerance in chickpea. Molecular Genetics and Genomics, 2015, 290, 559-571.	2.1	180
58	Allelic relationships of flowering time genes in chickpea. Euphytica, 2015, 203, 295-308.	1.2	47
59	Identification of a non-redundant set of 202 in silico SSR markers and applicability of a select set in chickpea (CicerÂarietinum L.). Euphytica, 2015, 205, 381-394.	1.2	18
60	MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics, 2015, 128, 999-1017.	3.6	230
61	Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum) Tj ETQq1 1 C).784314 5.1	rgBT/Overloo
62	Markerâ€Assisted Backcrossing to Introgress Resistance to Fusarium Wilt Race 1 and Ascochyta Blight in C 214, an Elite Cultivar of Chickpea. Plant Genome, 2014, 7, plantgenome2013.10.0035.	2.8	132
63	Advances in Chickpea Genomics. , 2014, , 73-94.		16
64	Genetic dissection of drought tolerance in chickpea (CicerÂarietinum L.). Theoretical and Applied Genetics, 2014, 127, 445-462.	3.6	304
65	Climate change impacts and potential benefits of drought and heat tolerance in chickpea in South Asia and East Africa. European Journal of Agronomy, 2014, 52, 123-137.	4.1	47
66	A chromosomal genomics approach to assess and validate the <i>desi</i> and <i>kabuli</i> draft chickpea genome assemblies. Plant Biotechnology Journal, 2014, 12, 778-786.	8.3	54
67	Phylogenetic diversity of Mesorhizobium in chickpea. Journal of Biosciences, 2014, 39, 513-517.	1.1	33
68	Genomics-assisted breeding for drought tolerance in chickpea. Functional Plant Biology, 2014, 41, 1178.	2.1	75
69	Kabuli and desi chickpeas differ in their requirement for reproductive duration. Field Crops Research, 2014, 163, 24-31.	5.1	44
70	Genetic Dissection of Drought and Heat Tolerance in Chickpea through Genome-Wide and Candidate Gene-Based Association Mapping Approaches. PLoS ONE, 2014, 9, e96758.	2.5	187
71	Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnology Advances, 2013, 31, 1120-1134.	11.7	289
72	Biplot analysis of genotype × environment interactions and identification of stable sources of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Australasian Plant Pathology, 2013, 42, 561-571.	1.0	35

Pooran M Gaur

#	Article	IF	CITATIONS
73	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	17.5	1,049
74	Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica, 2013, 193, 121-133.	1.2	111
75	Partitioning coefficient—A trait that contributes to drought tolerance in chickpea. Field Crops Research, 2013, 149, 354-365.	5.1	44
76	Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 2013, 40, 1334.	2.1	179
77	Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Archives of Agronomy and Soil Science, 2013, 59, 823-843.	2.6	126
78	Genotype and Growing Environment Interaction Shows a Positive Correlation between Substrates of Raffinose Family Oligosaccharides (RFO) Biosynthesis and Their Accumulation in Chickpea (Cicer) Tj ETQqO 0 0	rgB 5. Øver	loc ഉ മ0 Tf 50
79	Variation in carbon isotope discrimination and its relationship with harvest index in the reference collection of chickpea germplasm. Functional Plant Biology, 2013, 40, 1350.	2.1	39
80	Traits of relevance to improve yield under terminal drought stress in chickpea (C. arietinum L.). Field Crops Research, 2013, 145, 88-95.	5.1	45
81	Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 2013, 142, 9-19.	5.1	92
82	Introgression of Botrytis grey mould resistance genes from <i>Cicer reticulatum</i> (<i>bgmr1</i> _{cr}) and <i>C. echinospermum</i> (<i>bgmr1</i> _{ce}) to chickpea (<i>C. arietinum</i>). Plant Genetic Resources: Characterisation and Utilisation, 2013, 11, 212-216.	0.8	10
83	Fastâ€Track Introgression of " <i>QTLâ€hotspotâ€</i> for Root Traits and Other Drought Tolerance Traits in JG 11, an Elite and Leading Variety of Chickpea. Plant Genome, 2013, 6, plantgenome2013.07.0022.	2.8	118
84	Large Genetic Variability in Chickpea for Tolerance to Herbicides Imazethapyr and Metribuzin. Agronomy, 2013, 3, 524-536.	3.0	22
85	Phenotyping Chickpeas and Pigeonpeas for Adaptation to Drought. Frontiers in Physiology, 2012, 3, 179.	2.8	60
86	Genetic variability and interrelationships of phenological, physicochemical and cooking quality traits in chickpea. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 194-201.	0.8	19
87	Genetics and Characterization of an Open Flower Mutant in Chickpea. Journal of Heredity, 2012, 103, 297-302.	2.4	10
88	High temperature tolerance in chickpea and its implications for plant improvement. Crop and Pasture Science, 2012, 63, 419.	1.5	88
89	Impact of Genomic Technologies on Chickpea Breeding Strategies. Agronomy, 2012, 2, 199-221.	3.0	128
90	Inheritance of Natural Seed-Coat Cracking in Chickpea. Journal of Heredity, 2012, 103, 898-902.	2.4	4

#	Article	IF	CITATIONS
91	Nutritional quality and health benefits of chickpea (<i>Cicer arietinum</i> L.): a review. British Journal of Nutrition, 2012, 108, S11-S26.	2.3	685
92	Identification and multi-environment validation of resistance to Fusarium oxysporum f. sp. ciceris in chickpea. Field Crops Research, 2012, 135, 82-88.	5.1	38
93	Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. Journal of Biosciences, 2012, 37, 811-820.	1.1	68
94	Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiologiae Plantarum, 2012, 34, 1651-1658.	2.1	103
95	Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Functional Plant Biology, 2012, 39, 1009.	2.1	141
96	Assessment of ICCV 2Â×ÂJG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Molecular Breeding, 2012, 30, 9-21.	2.1	90
97	Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. European Journal of Agronomy, 2012, 41, 42-51.	4.1	48
98	Largeâ€scale development of costâ€effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnology Journal, 2012, 10, 716-732.	8.3	221
99	Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 2012, 32, 31-44.	5.3	145
100	Characterisation and genetic diversity analysis of selected chickpea cultivars of nine countries using simple sequence repeat (SSR) markers. Crop and Pasture Science, 2011, 62, 177.	1.5	26
101	Consistent Variation Across Soil Types in Salinity Resistance of a Diverse Range of Chickpea (Cicer) Tj ETQq1 1).784314 ı 3.5	rgBT /Overloo
102	Largeâ€scale transcriptome analysis in chickpea (<i>Cicer arietinum</i> L.), an orphan legume crop of the semiâ€arid tropics of Asia and Africa. Plant Biotechnology Journal, 2011, 9, 922-931.	8.3	250
103	Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): Podding is a particularly sensitive stage. Environmental and Experimental Botany, 2011, 71, 260-268.	4.2	86
104	Mapping QTL for resistance to botrytis grey mould in chickpea. Euphytica, 2011, 182, 1-9.	1.2	59
105	Estimation of genetic components of variation for salt tolerance in chickpea using the generation mean analysis. Euphytica, 2011, 182, 73.	1.2	5
106	Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 2011, 122, 1577-1589.	3.6	120
107	Development of screening techniques and identification of new sources of resistance to Ascochyta blight disease of chickpea. Australasian Plant Pathology, 2011, 40, 149-156.	1.0	36
108	Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 59-69.	0.8	134

#	Article	IF	CITATIONS
109	Genomics and Physiological Approaches for Root Trait Breeding to Improve Drought Tolerance in Chickpea (Cicer arietinum L.). , 2011, , 233-250.		23
110	Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.). PLoS ONE, 2011, 6, e27275.	2.5	160
111	Genetics of ascochyta blight resistance in chickpea. Euphytica, 2010, 171, 337-343.	1.2	28
112	Salt sensitivity in chickpea. Plant, Cell and Environment, 2010, 33, 490-509.	5.7	194
113	Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Research, 2010, 119, 322-330.	5.1	101
114	A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics, 2009, 10, 523.	2.8	199
115	Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica, 2009, 165, 79-88.	1.2	53
116	Assessment and comparison of AFLP and SSR based molecular genetic diversity in Indian isolates of Ascochyta rabiei, a causal agent of Ascochyta blight in chickpea (Cicer arietinum L.). Mycological Progress, 2009, 8, 87-97.	1.4	13
117	Allelic relationship between spontaneous and induced mutant genes for stem fasciation in chickpea. Plant Breeding, 2008, 127, 319-321.	1.9	8
118	Estimation of gene effects of the drought avoidance root characteristics in chickpea (C. arietinum L.). Field Crops Research, 2008, 105, 64-69.	5.1	38
119	Improving Drought-Avoidance Root Traits in Chickpea (<i>Cicer arietinum</i> L.) -Current Status of Research at ICRISAT. Plant Production Science, 2008, 11, 3-11.	2.0	136
120	Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Research, 2007, 104, 123-129.	5.1	146
121	An induced brachytic mutant of chickpea and its possible use in ideotype breeding. Euphytica, 2007, 159, 35-41.	1.2	21
122	Molecular Genetics and Breeding of Grain Legume Crops for the Semi-Arid Tropics. , 2007, , 207-241.		35
123	STUDIES ON EARLY PODDING VARIETIES AND POST-HARVEST MANAGEMENT OF IMMATURE GREEN GRAINS OF CHICKPEA TO BE USED AS VEGETABLE. Acta Horticulturae, 2007, , 353-358.	0.2	3
124	Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Research, 2006, 98, 230-244.	5.1	107
125	Botrytis grey mould of chickpea: a review of biology, epidemiology, and disease management. Australian Journal of Agricultural Research, 2006, 57, 1137.	1.5	49
126	Chickpea molecular breeding: New tools and concepts. Euphytica, 2006, 147, 81-103.	1.2	135

#	ARTICLE	IF	CITATIONS
127	Allelic relationships of genes controlling number of flowers per axis in chickpea. Euphytica, 2006, 152, 331-337.	1.2	22
128	Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Australian Journal of Agricultural Research, 2005, 56, 317.	1.5	178
129	Broadâ€fewâ€leaflets and outwardly curved wings: two new mutants of chickpea. Plant Breeding, 2003, 122, 192-194.	1.9	22
130	A gene producing one to nine flowers per flowering node in chickpea. Euphytica, 2002, 128, 231-235.	1.2	30
131	Brief communication. A gene for leaf necrosis in chickpea (Cicer arietinum L.). Journal of Heredity, 2000, 91, 79-81.	2.4	1
132	Isozyme polymorphism and phylogenetic interpretations in the genus Cicer L Theoretical and Applied Genetics, 1992, 83, 620-627.	3.6	72
133	Inheritance and Linkage of Isozyme Coding Genes in Chickpea. Journal of Heredity, 1990, 81, 455-461.	2.4	60
134	Genetic control and linkage relations of additional isozyme markers in chick-pea. Theoretical and Applied Genetics, 1990, 80, 648-656.	3.6	85