
Hans S Keirstead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787180/publications.pdf Version: 2024-02-01

HANG S KEIDSTEAD

#	Article	IF	CITATIONS
1	Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Remyelinate and Restore Locomotion after Spinal Cord Injury. Journal of Neuroscience, 2005, 25, 4694-4705.	3.6	1,138
2	Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia, 2005, 49, 385-396.	4.9	546
3	Spinal cord injury is accompanied by chronic progressive demyelination. Journal of Comparative Neurology, 2005, 486, 373-383.	1.6	356
4	Lack of Enhanced Spinal Regeneration in Nogo-Deficient Mice. Neuron, 2003, 38, 213-224.	8.1	347
5	Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia, 1998, 22, 161-170.	4.9	333
6	Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Improve Recovery after Cervical Spinal Cord Injury Â. Stem Cells, 2010, 28, 152-163.	3.2	273
7	Identification of Post-mitotic Oligodendrocytes Incapable of Remyelination within the Demyelinated Adult Spinal Cord. Journal of Neuropathology and Experimental Neurology, 1997, 56, 1191-1201.	1.7	239
8	Neutralization of the Chemokine CXCL10 Reduces Inflammatory Cell Invasion and Demyelination and Improves Neurological Function in a Viral Model of Multiple Sclerosis. Journal of Immunology, 2001, 167, 4091-4097.	0.8	202
9	Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Experimental Neurology, 2003, 184, 456-463.	4.1	143
10	Stem cells for the treatment of spinal cord injury. Experimental Neurology, 2008, 209, 368-377.	4.1	140
11	The origin of remyelinating cells in the central nervous system. Journal of Neuroimmunology, 1999, 98, 69-76.	2.3	129
12	Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transplant Immunology, 2005, 15, 131-142.	1.2	114
13	Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury. Journal of Neuroscience Research, 2006, 84, 724-734.	2.9	94
14	Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regenerative Medicine, 2006, 1, 469-479.	1.7	94
15	Histological and Functional Benefit Following Transplantation of Motor Neuron Progenitors to the Injured Rat Spinal Cord. PLoS ONE, 2010, 5, e11852.	2.5	90
16	Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Experimental Neurology, 2004, 187, 254-265.	4.1	86
17	Neutralization of the chemokine CXCL10 enhances tissue sparing and angiogenesis following spinal cord injury. Journal of Neuroscience Research, 2004, 77, 701-708.	2.9	76
18	The Extent of Myelin Pathology Differs following Contusion and Transection Spinal Cord Injury. Journal of Neurotrauma, 2007, 24, 1631-1646.	3.4	74

HANS S KEIRSTEAD

#	Article	IF	CITATIONS
19	Cellular therapies in motor neuron diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 1128-1138.	3.8	68
20	Stem cells for the treatment of myelin loss. Trends in Neurosciences, 2005, 28, 677-683.	8.6	62
21	Stem cells and spinal cord regeneration. Current Opinion in Biotechnology, 2009, 20, 552-562.	6.6	55
22	Three-dimensional early retinal progenitor 3D tissue constructs derived from human embryonic stem cells. Journal of Neuroscience Methods, 2010, 190, 63-70.	2.5	53
23	Therapeutic applications of oligodendrocyte precursors derived from human embryonic stem cells. Current Opinion in Biotechnology, 2007, 18, 434-440.	6.6	50
24	Human Motor Neuron Progenitor Transplantation Leads to Endogenous Neuronal Sparing in 3 Models of Motor Neuron Loss. Stem Cells International, 2011, 2011, 1-11.	2.5	50
25	Stem cell-based cell replacement strategies for the central nervous system. Neuroscience Letters, 2009, 456, 107-111.	2.1	45
26	Therapeutic neutralization of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice. Regenerative Medicine, 2007, 2, 771-783.	1.7	42
27	Derivation of High Purity Neuronal Progenitors from Human Embryonic Stem Cells. PLoS ONE, 2011, 6, e20692.	2.5	41
28	A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 1079-1092.	1.9	41
29	Endogenous remyelination is induced by transplant rejection in a viral model of multiple sclerosis. Journal of Neuroimmunology, 2009, 212, 74-81.	2.3	37
30	Voluntary running attenuates age-related deficits following SCI. Experimental Neurology, 2008, 210, 207-216.	4.1	35
31	Stem cell transplantation into the central nervous system and the control of differentiation. Journal of Neuroscience Research, 2001, 63, 233-236.	2.9	32
32	Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury. BMC Neurology, 2007, 7, 30.	1.8	31
33	Myelin pathogenesis and functional deficits following SCI are age-associated. Experimental Neurology, 2008, 213, 363-371.	4.1	31
34	Retinal organoids on-a-chip: a micro-millifluidic bioreactor for long-term organoid maintenance. Lab on A Chip, 2021, 21, 3361-3377.	6.0	31
35	Trophic factors GDNF and BDNF improve function of retinal sheet transplants. Experimental Eye Research, 2010, 91, 727-738.	2.6	27
36	A noninvasive ultrasonographic method to evaluate bladder function recovery in spinal cord injured rats. Experimental Neurology, 2005, 194, 120-127.	4.1	24

HANS S KEIRSTEAD

#	Article	IF	CITATIONS
37	Derivation of High-Purity Oligodendroglial Progenitors. Methods in Molecular Biology, 2009, 549, 59-75.	0.9	23
38	Stem cell-derived neurotrophic support for the neuromuscular junction in spinal muscular atrophy. Expert Opinion on Biological Therapy, 2010, 10, 1587-1594.	3.1	18
39	Stem cell-based treatments for spinal cord injury. Progress in Brain Research, 2012, 201, 233-252.	1.4	18
40	Septations in chronic spinal cord injury cavities contain axons. Experimental Neurology, 2005, 196, 339-341.	4.1	15
41	Stem Cell Based Strategies for Spinal Cord Injury Repair. Advances in Experimental Medicine and Biology, 2012, 760, 16-24.	1.6	14
42	Retinal Transplants: Hope to Preserve and Restore Vision. Optics and Photonics News, 2008, 19, 36.	0.5	5
43	Automated cell classification and visualization for analyzing remyelination therapy. Visual Computer, 2011, 27, 1055-1069.	3.5	5
44	Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia, 1998, 22, 161-170.	4.9	5
45	The Embryonic Chicken as a Model for Central Nervous System Injury and Repair. Methods, 1993, 3, 35-43.	0.5	4
46	Oligodendrocyte Differentiation from Human Embryonic Stem Cells. , 2007, , 210-226.		4
47	Automated analysis of remyelination therapy for spinal cord injury. , 2010, , .		2
48	Cellular toxicity induced by the 26â€kDa fragment and amyotrophic lateral sclerosisâ€associated mutant forms of <scp>TAR DNA</scp> â€binding proteinÂ43 in human embryonic stem cellâ€derived motor neurons. Neurology and Clinical Neuroscience, 2013, 1, 24-31.	0.4	2
49	Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. , 1998, 22, 161.		2
50	Directed Differentiation of Human Pluripotent Stem Cells to Oligodendrocyte Progenitor Cells. , 2012, , 399-412.		0
51	Demyelination as a Therapeutic Target in Spinal Cord Injury. , 2007, , 201-221.		0
52	The Effect of Myelin Disruption on Spinal Cord Regeneration. , 1997, , 230-242.		0

The Effect of Myelin Disruption on Spinal Cord Regeneration. , 1997, , 230-242. 52