List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787129/publications.pdf Version: 2024-02-01

HIDEAKI TAKARE

#	Article	IF	CITATIONS
1	Recent progress of laboratory astrophysics with intense lasers. High Power Laser Science and Engineering, 2021, 9, .	4.6	27
2	Relativistic Laser-Electron Interactions. Springer Series in Plasma Science and Technology, 2020, , 167-202.	0.2	0
3	Collisionless Shocks Driven by Supersonic Plasma Flows with Self-Generated Magnetic Fields. Physical Review Letters, 2019, 123, 055002.	7.8	26
4	Maximizing magnetic field generation in high power laser–solid interactions. High Power Laser Science and Engineering, 2019, 7, .	4.6	19
5	Optimizing the energies conversion in laser-electron beam collision. Physics of Plasmas, 2019, 26, 033102.	1.9	3
6	The suppression of radiation reaction and laser field depletion in laser-electron beam interaction. Physics of Plasmas, 2018, 25, .	1.9	5
7	Magnetic field production via the Weibel instability in interpenetrating plasma flows. Physics of Plasmas, 2017, 24, .	1.9	27
8	Generation of counter-streaming plasmas for collisionless shock experiment. High Energy Density Physics, 2017, 23, 207-211.	1.5	4
9	Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility. Physical Review Letters, 2017, 118, 185003.	7.8	49
10	Characterization of electrostatic shock in laser-produced optically-thin plasma flows using optical diagnostics. Physics of Plasmas, 2017, 24, 072701.	1.9	5
11	lonization and reflux dependence of magnetic instability generation and probing inside laser-irradiated solid thin foils. Physics of Plasmas, 2017, 24, 103115.	1.9	14
12	Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas. Journal of Physics: Conference Series, 2016, 688, 012071.	0.4	6
13	Radiation reaction in the interaction of ultraintense laser with matter and gamma ray source. Physics of Plasmas, 2016, 23, .	1.9	8
14	Collisionless electrostatic shock generation using high-energy laser systems. Advances in Physics: X, 2016, 1, 425-443.	4.1	10
15	Collisionless shock experiments with lasers and observation of Weibel instabilities. Physics of Plasmas, 2015, 22, .	1.9	51
16	Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nature Physics, 2015, 11, 173-176.	16.7	236
17	Obtaining Correct and Physically Meaningful Results for Simulations of the Richtmyer-Meshkov Instability (RMI) Driven by Shock Wave. , 2014, , .		0
18	Conference on Computational Physics 2012. Asia-Pacific Physics Newsletter, 2013, 02, 12-13.	0.0	0

#	Article	IF	CITATIONS
19	Thomson scattering measurement of a shock in laser-produced counter-streaming plasmas. Physics of Plasmas, 2013, 20, .	1.9	25
20	Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics. Physics of Plasmas, 2013, 20, .	1.9	36
21	Laboratory Astrophysics with Lasers: Turbulent Electromagnetic Field Associated with Collisionless Shocks. The Review of Laser Engineering, 2013, 41, 20.	0.0	0
22	Optical pyrometer system for collisionless shock experiments in high-power laser-produced plasmas. Review of Scientific Instruments, 2012, 83, 10D514.	1.3	3
23	Kelvin-Helmholtz Turbulence Associated with Collisionless Shocks in Laser Produced Plasmas. Physical Review Letters, 2012, 108, 195004.	7.8	34
24	Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers. High Energy Density Physics, 2012, 8, 38-45.	1.5	82
25	Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas. Nature Physics, 2012, 8, 809-812.	16.7	118
26	Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks. Physics of Plasmas, 2012, 19, .	1.9	101
27	Collisionless Shock Wave Generation in Counter-Streaming Plasmas Using Gekko XII HIPER Laser. Plasma and Fusion Research, 2011, 6, 2404057-2404057.	0.7	4
28	Laboratory Astrophysics Experiment Using High-Power Lasers. The Review of Laser Engineering, 2011, 39, 5-11.	0.0	0
29	Formation of density inhomogeneity in laser produced plasmas forÂaÂtest bed of magnetic field amplification in supernova remnants. Astrophysics and Space Science, 2011, 336, 269-272.	1.4	11
30	Highly radiative shock experiments driven by GEKKO XII. Astrophysics and Space Science, 2011, 336, 213-218.	1.4	14
31	The scalability of the accretion column in magnetic cataclysmic variables: the POLAR project. Astrophysics and Space Science, 2011, 336, 81-85.	1.4	19
32	Time Evolution of Collisionless Shock in Counterstreaming Laser-Produced Plasmas. Physical Review Letters, 2011, 106, 175002.	7.8	127
33	Model experiment of cosmic ray acceleration due to an incoherent wakefield induced by an intense laser pulse. Physics of Plasmas, 2011, 18, 010701.	1.9	23
34	Can X-Ray Lasers Exist in Astrophysical Objects ?. Publication of the Astronomical Society of Japan, 2011, 63, 727-733.	2.5	1
35	Characteristic measurements of silicon dioxide aerogel plasmas generated in a Planckian radiation environment. Physics of Plasmas, 2010, 17, .	1.9	5
36	Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation. Physics of Plasmas, 2010, 17, 032114.	1.9	78

#	Article	lF	CITATIONS
37	NONRELATIVISTIC COLLISIONLESS SHOCKS IN WEAKLY MAGNETIZED ELECTRON-ION PLASMAS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATION OF PERPENDICULAR SHOCK. Astrophysical Journal, 2010, 721, 828-842.	4.5	58
38	Collisionless shock generation in high-speed counterstreaming plasma flows by a high-power laser. Physics of Plasmas, 2010, 17, .	1.9	50
39	JET FORMATION IN COUNTERSTREAMING COLLISIONLESS PLASMAS. Astrophysical Journal, 2009, 707, L137-L141.	4.5	21
40	Recent studies of high energy density physics at the institute of physics, Beijing. , 2009, , .		0
41	Experimental results to study astrophysical plasma jets using Intense Lasers. Astrophysics and Space Science, 2009, 322, 25-29.	1.4	11
42	A jet production experiment using the high-repetition rate Astra laser. Astrophysics and Space Science, 2009, 322, 31-35.	1.4	7
43	X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion. Nature Physics, 2009, 5, 821-825.	16.7	113
44	Calculation of Photoionized Plasmas with a Detailed-Configuration-Accounting Atomic Model. Journal of the Physical Society of Japan, 2009, 78, 064301.	1.6	1
45	Recent Laboratory Astrophysics Experiments at LULI. Plasma and Fusion Research, 2009, 4, 044-044.	0.7	5
46	Experimental evidence and theoretical analysis of photoionized plasma under x-ray radiation produced by an intense laser. Physics of Plasmas, 2008, 15, .	1.9	28
47	High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers. Plasma Physics and Controlled Fusion, 2008, 50, 124057.	2.1	60
48	Nonrelativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas. Astrophysical Journal, 2008, 681, L93-L96.	4.5	137
49	Spectrum modulation of relativistic electrons by laser wakefield. Applied Physics Letters, 2008, 93, 081501.	3.3	8
50	Nonlinear Dynamics of Ionization Fronts in HII Regions. Astrophysics and Space Science, 2007, 307, 183-186.	1.4	4
51	Eagle Nebula Pillars: From Models to Observations. Astrophysics and Space Science, 2005, 298, 177-181.	1.4	5
52	Hydrodynamic Instability of Ionization Front in HII Regions: From Linear to Nonlinear Evolution. Astrophysics and Space Science, 2005, 298, 197-202.	1.4	11
53	X-ray Line and Recombination Emission in the Afterglow of Grb. Astrophysics and Space Science, 2005, 298, 323-326.	1.4	0
54	Numerical Simulation of Non-spherical Implosion Related to Fast Ignition. AIP Conference Proceedings, 2003, , .	0.4	5

#	Article	IF	CITATIONS
55	Prospect for Multiple Time and Spatial Scale Simulation Research in Astrophysical Plasma Phenomena: Grand Challenge for Studying the History of Universe from the Dark Ages to the Solar System. Journal of Plasma and Fusion Research, 2003, 79, 504-515.	0.4	2
56	Potentiality of the Laboratory Astrophysics Using High Repetition Rate and High Intensity Lasers. The Review of Laser Engineering, 2003, 31, 711-720.	0.0	0
57	Imprint reduction in a plasma layer preformed with x-ray irradiation. Physics of Plasmas, 2002, 9, 1381-1391.	1.9	12
58	Single spatial mode experiments on initial laser imprint on direct-driven planar targets. Physics of Plasmas, 2002, 9, 1734-1744.	1.9	15
59	Numerical study of pair creation by ultraintense lasers. Physics of Plasmas, 2002, 9, 1505-1512.	1.9	82
60	Relativistic Plasma Physics. Relativistic Motion of Charged Particles in Ultra-Intense Laser Fields Journal of Plasma and Fusion Research, 2002, 78, 341-346.	0.4	3
61	Monochromatic x-ray imaging with bent crystals for laser fusion research. Review of Scientific Instruments, 2001, 72, 744-747.	1.3	17
62	Laboratory simulation of the collision of supernova 1987A with its circumstellar ring nebula. Plasma Physics Reports, 2001, 27, 843-851.	0.9	14
63	High Power Laser Astrophysics. The Review of Laser Engineering, 2001, 29, 82-83.	0.0	0
64	Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers. Science, 1999, 284, 1488-1493.	12.6	369
65	Prospect on the Atomic and Molecular Processes in Plasmas. Transport Code. Radiation Transport Code Journal of Plasma and Fusion Research, 1999, 75, 1145-1155.	0.4	0
66	Fast Ignitor Research with Use of Ultra-Intense Laser System Journal of Plasma and Fusion Research, 1999, 75, 452-458.	0.4	2
67	Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. Journal of Plasma Physics, 1998, 60, 743-760.	2.1	38
68	One- and two-dimensional fast x-ray imaging of laser-driven implosion dynamics with x-ray streak cameras. Review of Scientific Instruments, 1997, 68, 828-830.	1.3	11
69	Time-resolved, two-dimensional electron-temperature distribution of laser-imploded core plasmas. Review of Scientific Instruments, 1997, 68, 820-823.	1.3	13
70	Effects of neutron heating on ignition and energy gain of laser-imploded D-T pellets. Laser and Particle Beams, 1997, 15, 259-276.	1.0	4
71	Atomic Number Scaling of the Nickel-Like Soft X-Ray Lasers. International Journal of Modern Physics B, 1997, 11, 945-990.	2.0	33
72	Development of inertial fusion energy. , 1997, , .		1

Development of inertial fusion energy. , 1997, , . 72

#	Article	IF	CITATIONS
73	Agreement of measured fusion gains with the self-similarity model and volume ignition for NIF conditions. , 1997, , .		Ο
74	Laser Fusion Research at Ile Osaka University. Fusion Science and Technology, 1996, 30, 625-633.	0.6	3
75	Kinetic effects on the electron thermal transport in ignition target design. AIP Conference Proceedings, 1996, , .	0.4	1
76	Instabilities of nuclear flames in thermonuclear supernovae. AIP Conference Proceedings, 1996, , .	0.4	1
77	Implosion experiments with uniformity-improved GEKKO XII: Overview. AIP Conference Proceedings, 1996, , .	0.4	1
78	Recent progress of implosion experiments with uniformityâ€improved GEKKO XII laser facility at the Institute of Laser Engineering, Osaka University. Physics of Plasmas, 1996, 3, 2077-2083.	1.9	34
79	Kinetic effects on the electron thermal transport in ignition target design. Physics of Plasmas, 1996, 3, 3420-3424.	1.9	12
80	Study of indirectly driven implosion by xâ€ r ay spectroscopic measurements. Physics of Plasmas, 1995, 2, 2063-2074.	1.9	42
81	Cryogenic deuterium target experiments with the GEKKO XII, green laser system. Physics of Plasmas, 1995, 2, 2495-2503.	1.9	18
82	ãf¬ãf¼ã,¶ãf¼æ,èžå•̂ç,¹ç«ç‡f焼ã«å⁵ãぢd. The Review of Laser Engineering, 1995, 23, 117-120.	0.0	0
83	High energy particle transport in laser fusion. AIP Conference Proceedings, 1994, , .	0.4	1
84	Indirect-drive inertial fusion research at the Institute of Laser Engineering. AIP Conference Proceedings, 1994, , .	0.4	0
85	Soft xâ€ray spectra of highly ionized elements with atomic numbers ranging from 57 to 82 produced by compact lasers. Journal of Applied Physics, 1994, 75, 1923-1930.	2.5	42
86	Line profile modeling for non-LTE partially ionized plasmas based on average atom model with <i>l</i> –splitting. Laser and Particle Beams, 1993, 11, 81-87.	1.0	8
87	Properties of an exploding foil neon-like germanium soft X-ray laser. Laser and Particle Beams, 1993, 11, 109-117.	1.0	7
88	Numerical simulation of implosion and burn of <i>D–T</i> ignitor/D ³ He fuel pellet for D ³ He inertial confinement fusion reactor. Laser and Particle Beams, 1993, 11, 137-147.	1.0	5
89	Non-LTE atomic modeling for laser-produced plasmas. Laser and Particle Beams, 1993, 11, 119-126.	1.0	1
90	Radiation-driven cannonball targets for high-convergence implosions. Laser and Particle Beams, 1993, 11, 89-96.	1.0	2

#	Article	IF	CITATIONS
91	Preliminary Studies of Direct Energy Conversion in a D- ³ He Inertial Confinement Fusion Reactor. Fusion Science and Technology, 1992, 22, 56-65.	0.6	8
92	Design of Laser Fusion Reactordriven by Laser-Diode-Pumped Solid State Laser. Fusion Science and Technology, 1992, 21, 1460-1464.	0.6	5
93	Beatwave excitation of plasma wave and electron acceleration. AIP Conference Proceedings, 1991, , .	0.4	1
94	Recent results from experiments on xâ€ray confining cavities (abstract). Review of Scientific Instruments, 1990, 61, 2813-2813.	1.3	1
95	Soft X ray radiation confinement in laser fusion KakuyūgŕKenkyū, 1990, 63, 219-234.	0.1	3
96	Design study of an indirect-drive target KakuyūgŕKenkyū, 1990, 64, 408-429.	0.1	0
97	Pusherless implosion, pulse tailoring and ignition scaling law for laser fusion. Laser and Particle Beams, 1989, 7, 249-258.	1.0	20
98	Theory of efficient shell implosions. Laser and Particle Beams, 1989, 7, 189-205.	1.0	5
99	Requirement of uniformity for fuel ignition and uniformity in high neutron yield implosion. Laser and Particle Beams, 1989, 7, 175-187.	1.0	16
100	Internal structure of a partially ionized heavy ion. Isolated ion model. Laser and Particle Beams, 1989, 7, 581-588.	1.0	0
101	Theoretical studies on electron and radiation preheatings. Laser and Particle Beams, 1989, 7, 487-493.	1.0	4
102	Scalings of implosion experiments for high neutron yield. Physics of Fluids, 1988, 31, 2884.	1.4	165
103	Computational and experimental studies on the implosion processes of laser fusion targets. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 2743-2745.	2.1	0
104	Directly Driven Implosion by Laser. KakuyūgŕKenkyū, 1987, 58, 244-254.	0.1	0
105	Laser accelerators (Recent topics on beat wave acceleration) The Review of Laser Engineering, 1987, 15, 481-494.	0.0	0
106	Review of Laser Fusion Theory and Simulation. The Review of Laser Engineering, 1986, 14, 1066-1089.	0.0	0
107	Magnetic Field Effects on Resonance Absorption. Journal of the Physical Society of Japan, 1985, 54, 4178-4187.	1.6	0
108	Resonant Excitation of High Amplitude Oscillations and Hydrodynamic Wave Breaking in a Streaming Cold Plasma. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1982, 37, 208-218.	1.5	8

#	Article	IF	CITATIONS
109	Electrostatic Field Generation and Hot Electron Reduction in a Laser Produced Plasma. Journal of the Physical Society of Japan, 1982, 51, 2293-2299.	1.6	6
110	Effects of Thermal Conduction and Compressibility on Rayleigh-Taylor Instability. Journal of the Physical Society of Japan, 1980, 48, 1793-1794.	1.6	16
111	Ablation and Compression Mechanism in Laser Fusion Plasma The Review of Laser Engineering, 1979, 7, 394-400.	0.0	1
112	High-intensity x-ray pulses from picosecond glass laser produced plasmas. , 0, , .		0