
Tim Luetkens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5786919/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends in Biotechnology, 2022, 40, 875-890.	9.3	17
2	Humoral immunity against SARSâ€CoVâ€2 variants including omicron in solid organ transplant recipients after three doses of a COVIDâ€19 mRNA vaccine. Clinical and Translational Immunology, 2022, 11, e1391.	3.8	21
3	Low-affinity CAR T cells exhibit reduced trogocytosis, preventing rapid antigen loss, and increasing CAR T cell expansion. Leukemia, 2022, 36, 1943-1946.	7.2	41
4	Anti-SARS-CoV-2 Immune Responses in Patients Receiving an Allogeneic Stem Cell or Organ Transplant. Vaccines, 2021, 9, 737.	4.4	5
5	Deep dissection of the antiviral immune profile of patients with COVID-19. Communications Biology, 2021, 4, 1389.	4.4	9
6	In vivo vaccination effect in multiple myeloma patients treated with the monoclonal antibody isatuximab. Leukemia, 2020, 34, 317-321.	7.2	34
7	The promise of adoptive cellular immunotherapies in hepatocellular carcinoma. Oncolmmunology, 2020, 9, 1673129.	4.6	26
8	Successful transfer of anti–SARS-CoV-2 immunity using convalescent plasma in an MM patient with hypogammaglobulinemia and COVID-19. Blood Advances, 2020, 4, 4864-4868.	5.2	20
9	Role of immunotherapy in Ewing sarcoma. , 2020, 8, e000653.		42
10	CD229 CAR T cells eliminate multiple myeloma and tumor propagating cells without fratricide. Nature Communications, 2020, 11, 798.	12.8	43
11	The role of surface molecule CD229 in Multiple Myeloma. Clinical Immunology, 2019, 204, 69-73.	3.2	9
12	Biomarkers for checkpoint inhibition in hematologic malignancies. Seminars in Cancer Biology, 2018, 52, 198-206.	9.6	18
13	Elotuzumab as a novel anti-myeloma immunotherapy. Human Vaccines and Immunotherapeutics, 2017, 13, 1751-1757.	3.3	6
14	Novel anti-myeloma immunotherapies targeting the SLAM family of receptors. Oncolmmunology, 2017, 6, e1308618.	4.6	21
15	Coinhibitory molecule PD-1 as a therapeutic target in the microenvironment of Multiple Myeloma. Current Cancer Drug Targets, 2017, 17, 839-845.	1.6	11
16	Oscillating expression of interleukin-16 in multiple myeloma is associated with proliferation, clonogenic growth, and PI3K/NFKB/MAPK activation. Oncotarget, 2017, 8, 49253-49263.	1.8	10
17	Chimeric Antigen Receptor (<scp>CAR</scp>) therapy for multiple myeloma. British Journal of Haematology, 2016, 172, 685-698.	2.5	53
18	Immunotherapies targeting CD38 in Multiple Myeloma. OncoImmunology, 2016, 5, e1217374.	4.6	33

TIM LUETKENS

#	Article	IF	CITATIONS
19	Cancer-testis antigen SLLP1 represents a promising target for the immunotherapy of multiple myeloma. Journal of Translational Medicine, 2015, 13, 197.	4.4	6
20	Cancer-testis antigen MAGEC2 promotes proliferation and resistance to apoptosis in Multiple Myeloma. British Journal of Haematology, 2015, 171, 752-762.	2.5	10
21	CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma. Human Vaccines and Immunotherapeutics, 2015, 11, 1606-1611.	3.3	26
22	Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation. Cancer Immunology, Immunotherapy, 2014, 63, 1151-1162.	4.2	17
23	5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity. Mediators of Inflammation, 2014, 2014, 1-12.	3.0	37
24	Simultaneous cytoplasmic and nuclear protein expression of melanoma antigenâ€A family and NYâ€ESOâ€1 cancerâ€ŧestis antigens represents an independent marker for poor survival in head and neck cancer. International Journal of Cancer, 2014, 135, 1142-1152.	5.1	46
25	Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia, 2014, 28, 993-1000.	7.2	92
26	The trifunctional antibody catumaxomab amplifies and shapes tumor-specific immunity when applied to gastric cancer patients in the adjuvant setting. Human Vaccines and Immunotherapeutics, 2013, 9, 2533-2542.	3.3	21
27	Longitudinal Analysis of Tetanus- and Influenza-Specific IgG Antibodies in Myeloma Patients. Clinical and Developmental Immunology, 2012, 2012, 1-9.	3.3	9
28	Cancerâ€ŧestis antigen expression and its epigenetic modulation in acute myeloid leukemia. American Journal of Hematology, 2011, 86, 918-922.	4.1	95
29	Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation. Clinical and Developmental Immunology, 2011, 2011, 1-10.	3.3	9
30	Cancer-testis antigens MAGE-C1/CT7 and MAGE-A3 promote the survival of multiple myeloma cells. Haematologica, 2010, 95, 785-793.	3.5	87
31	An optimized assay for the enumeration of antigen-specific memory B cells in different compartments of the human body. Journal of Immunological Methods, 2010, 358, 56-65.	1.4	46
32	Decrease of CD4+FOXP3+ T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology, 2010, 35, 663-673.	2.7	63
33	The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients. Experimental Hematology, 2010, 38, 860-867.	0.4	72
34	Expression and prognostic relevance of MAGE-C1/CT7 and MAGE-C2/CT10 in osteolytic lesions of patients with multiple myeloma. Experimental and Molecular Pathology, 2010, 89, 175-181.	2.1	25
35	NY Oâ€58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer. International Journal of Cancer, 2010, 127, 381-393.	5.1	52
36	Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leukemia Research, 2010, 34, 1647-1655.	0.8	33

TIM LUETKENS

#	Article	IF	CITATIONS
37	Prognostic and Diagnostic Value of Spontaneous Tumor-Related Antibodies. Clinical and Developmental Immunology, 2010, 2010, 1-8.	3.3	24
38	Longitudinal Analysis and Prognostic Effect of Cancer-Testis Antigen Expression in Multiple Myeloma. Clinical Cancer Research, 2009, 15, 1343-1352.	7.0	70
39	Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients. British Journal of Cancer, 2008, 99, 930-938.	6.4	106
40	CD4+CD25+FOXP3+ T regulatory cells reconstitute and accumulate in the bone marrow of patients with multiple myeloma following allogeneic stem cell transplantation. Haematologica, 2008, 93, 423-430.	3.5	59
41	Expression of Cancer-Testis Antigens MAGE-C1/CT7 and MAGE-A3 Is Central to the Survival of Myeloma Cells and Their Resistance to Chemotherapy. Blood, 2008, 112, 3668-3668.	1.4	1