
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5786745/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic and physiological characterization of sunflower resistance provided by the wild-derived OrDeb2 gene against highly virulent races of Orobanche cumana Wallr. Theoretical and Applied Genetics, 2022, 135, 501-525.	3.6	9
2	Characterization of postâ€haustorial resistance to sunflower broomrape. Crop Science, 2020, 60, 1188-1198.	1.8	15
3	An SSR-SNP Linkage Map of the Parasitic Weed Orobanche cumana Wallr. Including a Gene for Plant Pigmentation. Frontiers in Plant Science, 2019, 10, 797.	3.6	9
4	A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nature Plants, 2019, 5, 1211-1215.	9.3	53
5	First Report of Sunflower Broomrape (<i>Orobanche cumana</i>) in Portugal. Plant Disease, 2019, 103, 2143-2143.	1.4	4
6	Genetic Diversity of a Germplasm Collection of Confectionery Sunflower Landraces from Spain. Crop Science, 2018, 58, 1972-1981.	1.8	4
7	Research on resistance to sunflower broomrape: an integrated vision. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D203.	1.4	13
8	Genetic Analysis of ReducedÎ ³ -Tocopherol Content in Ethiopian Mustard Seeds. Scientific World Journal, The, 2016, 2016, 1-7.	2.1	1
9	Increased Virulence in Sunflower Broomrape (Orobanche cumana Wallr.) Populations from Southern Spain Is Associated with Greater Genetic Diversity. Frontiers in Plant Science, 2016, 7, 589.	3.6	28
10	Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages. Frontiers in Plant Science, 2016, 7, 590.	3.6	45
11	Molecular basis of the high-palmitic acid trait in sunflower seed oil. Molecular Breeding, 2016, 36, 1.	2.1	9
12	Genetic study of recessive broomrape resistance in sunflower. Euphytica, 2016, 209, 419-428.	1.2	18
13	Tocopherols in Sunflower Seedlings under Light and Dark Conditions. Scientific World Journal, The, 2015, 2015, 1-11.	2.1	5
14	Sunflower Broomrape (Orobanche cumana Wallr.). , 2015, , 129-155.		12
15	History of the race structure of Orobanche cumana and the breeding of sunflower for resistance to this parasitic weed: A review. Spanish Journal of Agricultural Research, 2015, 13, e10R01.	0.6	57
16	The Genetic Structure of WildOrobanche cumanaWallr. (Orobanchaceae) Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations. Scientific World Journal, The, 2014, 2014, 1-15.	2.1	12
17	Genetic Studies in Sunflower Broomrape. Helia, 2014, 37, .	0.4	1
18	Phylogenetic Relationships and Genetic Diversity among Orobanche cumana Wallr. and O. cernua L. (Orobanchaceae) Populations in the Iberian Peninsula. Helia, 2014, 37, .	0.4	3

#	Article	IF	CITATIONS
19	Changes in plastochromanol-8 and tocopherols during germination in Ethiopian mustard lines with contrasting tocopherol levels. Seed Science Research, 2014, 24, 101-112.	1.7	5
20	Identification, characterisation and discriminatory power of microsatellite markers in the parasitic weed <i><scp>O</scp>robanche cumana</i> . Weed Research, 2014, 54, 120-132.	1.7	18
21	Characterization of a Î ³ -tocopherol methyltransferase mutant gene in wild (Carthamus oxyacanthus M.) Tj ETQq1	1_0.78431 1.2	.4 rgBT /Ove
22	Extent of cross-fertilization in Orobanche cumana Wallr Biologia Plantarum, 2013, 57, 559-562.	1.9	14
23	Accumulation dynamics of seed tocopherols in sunflower lines with modified tocopherol levels. Acta Physiologiae Plantarum, 2013, 35, 3157-3165.	2.1	3
24	A dominant avirulence gene in <i><scp>O</scp>robanche cumana</i> triggers <i><scp>O</scp>r5</i> resistance in sunflower. Weed Research, 2013, 53, 322-327.	1.7	25
25	Genetic diversity of <i>Orobanche cumana</i> populations from Spain assessed using <scp>SSR</scp> markers. Weed Research, 2013, 53, 279-289.	1.7	34
26	Selection for contrasting tocopherol content and profile in <scp>E</scp> thiopian mustard. Plant Breeding, 2013, 132, 694-700.	1.9	7
27	Marker-Assisted and Physiology-Based Breeding for Resistance to Root Parasitic Orobanchaceae. , 2013, , 369-391.		23
28	FRUIT AND OIL CHARACTERISTICS OF ADVANCED SELECTIONS FROM AN OLIVE BREEDING PROGRAM. Acta Horticulturae, 2013, , 415-419.	0.2	2
29	Quantitative Trait Loci for Seed Tocopherol Content in Sunflower. Crop Science, 2012, 52, 786-794.	1.8	6
30	Mapping of major and modifying genes for high oleic acid content in safflower. Molecular Breeding, 2012, 30, 1279-1293.	2.1	31
31	Genetic basis of unstable expression of high gamma-tocopherol content in sunflower seeds. BMC Plant Biology, 2012, 12, 71.	3.6	16
32	Inheritance of resistance to sunflower broomrape (<i>Orobanche cumana</i> Wallr.) in an interspecific cross between <i>Helianthus annuus</i> and <i>Helianthus debilis</i> subsp <i>. tardiflorus</i> . Plant Breeding, 2012, 131, 220-221.	1.9	49
33	Expression of modified tocopherol content and profile in sunflower tissues. Journal of the Science of Food and Agriculture, 2012, 92, 351-357.	3.5	5
34	Development and characterization of genomic microsatellite markers in safflower (<i>Carthamus) Tj ETQq0 0 0 rg</i>	;BT /Overlc	ာင္ပန္ 10 Tf 50
35	Inheritance of increased seed tocopherol content in sunflower line IASTâ€413. Plant Breeding, 2011, 130, 540-543.	1.9	2

Inheritance of the unpigmented plant trait in <i>Orobanche cumana</i>. Weed Research, 2011, 51,
1.7 10

#	Article	IF	CITATIONS
37	Inheritance of deficient tocopherol accumulation in sunflower seeds. Journal of Genetics, 2011, 90, 489-491.	0.7	0
38	Molecular tagging and candidate gene analysis of the high gamma-tocopherol trait in safflower (Carthamus tinctorius L.). Molecular Breeding, 2011, 28, 367-379.	2.1	16
39	Transferability, amplification quality, and genome specificity of microsatellites inBrassica carinata and related species. Journal of Applied Genetics, 2010, 51, 123-131.	1.9	10
40	Transferability of non-genic microsatellite and gene-based sunflower markers to safflower. Euphytica, 2010, 175, 145-150.	1.2	13
41	The influence of flowering plant isolation on seed production and seed quality in Orobanche cumana. Weed Research, 2010, 50, 515-518.	1.7	10
42	Selection for contrasting seed tocopherol content in sunflower seeds. Journal of Agricultural Science, 2010, 148, 393-400.	1.3	19
43	Inheritance of high oleic acid content in safflower. Euphytica, 2009, 168, 61-69.	1.2	31
44	Understanding <i>Orobanche</i> and <i>Phelipanche</i> –host plant interactions and developing resistance. Weed Research, 2009, 49, 8-22.	1.7	60
45	Inheritance of very high glucosinolate content in Ethiopian mustard seeds. Plant Breeding, 2009, 128, 278-281.	1.9	5
46	Sunflower. , 2009, , 155-232.		24
47	Novel Safflower Germplasm with Increased Saturated Fatty Acid Content. Crop Science, 2009, 49, 127-132.	1.8	12
48	Development of SCAR markers linked to male sterility and very high linoleic acid content in safflower. Molecular Breeding, 2008, 22, 385-393.	2.1	15
49	Development and characterisation of a Brassica carinata inbred line incorporating genes for low glucosinolate content from B. juncea. Euphytica, 2008, 164, 365-375.	1.2	16
50	Inheritance of very high linoleic acid content and its relationship with nuclear male sterility in safflower. Plant Breeding, 2008, 127, 507-509.	1.9	19
51	Indigenous highly virulent accessions of the sunflower root parasitic weed <i>Orobanche cumana</i> . Weed Research, 2008, 48, 169-178.	1.7	29
52	Inheritance of resistance to broomrape (Orobanche cumana Wallr.) race F in a sunflower line derived from wild sunflower species. Plant Breeding, 2007, 126, 67-71.	1.9	50
53	Relationships between seed oil content and fatty acid composition in high stearic acid sunflower. Plant Breeding, 2007, 126, 503-508.	1.9	10
54	Registration of Three Sunflower Germplasms with Quantitative Resistance to Race F of Broomrape. Crop Science, 2006, 46, 1406-1407.	1.8	12

#	Article	IF	CITATIONS
55	Genetic and Molecular Analysis of High Gamma-Tocopherol Content in Sunflower. Crop Science, 2006, 46, 2015-2021.	1.8	22
56	Inheritance of High Stearic Acid Content in the Sunflower Mutant CASâ€14. Crop Science, 2006, 46, 22-29.	1.8	13
57	Transgressive segregation for reduced glucosinolate content in Brassica carinata A. Braun. Plant Breeding, 2006, 125, 400-402.	1.9	6
58	Genetic Mapping of the Tph1 Gene Controlling Beta-tocopherol Accumulation in Sunflower Seeds. Molecular Breeding, 2006, 17, 291-296.	2.1	25
59	Molecular analysis of the high stearic acid content in sunflower mutant CAS-14. Theoretical and Applied Genetics, 2006, 112, 867-875.	3.6	19
60	Molecular Mapping of Nuclear Male Sterility Genes in Sunflower. Crop Science, 2005, 45, 1851-1857.	1.8	28
61	Identification and genetic characterization of a safflower mutant with a modified tocopherol profile. Plant Breeding, 2005, 124, 459-463.	1.9	33
62	Use of Nearâ€Infrared Reflectance Spectroscopy for Selecting for High Stearic Acid Concentration in Single Husked Achenes of Sunflower. Crop Science, 2004, 44, 93-97.	1.8	22
63	Registration of Four Sunflower Germplasms Resistant to Race F of Broomrape. Crop Science, 2004, 44, 1033-1034.	1.8	36
64	Developing Midstearic Acid Sunflower Lines from a High Stearic Acid Mutant. Crop Science, 2004, 44, 70-75.	1.8	14
65	Novel variation for the tocopherol profile in a sunflower created by mutagenesis and recombination. Plant Breeding, 2004, 123, 490-492.	1.9	44
66	Mapping minor QTL for increased stearic acid content in sunflower seed oil. Molecular Breeding, 2004, 13, 313-322.	2.1	31
67	Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theoretical and Applied Genetics, 2004, 109, 92-102.	3.6	85
68	Developing Midstearic Acid Sunflower Lines from a High Stearic Acid Mutant. Crop Science, 2004, 44, 70.	1.8	6
69	Use of Near-Infrared Reflectance Spectroscopy for Selecting for High Stearic Acid Concentration in Single Husked Achenes of Sunflower. Crop Science, 2004, 44, 93.	1.8	11
70	Inheritance of reduced plant height in the sunflower line Dw 89. Plant Breeding, 2003, 122, 441-443.	1.9	6
71	Registration of Dw 89 and Dw 271 Dwarf Parental Lines of Sunflower. Crop Science, 2003, 43, 1140-1141.	1.8	7
72	Inheritance of Medium Stearic Acid Content in the Seed Oil of a Sunflower Mutant CASâ€4. Crop Science, 2002, 42, 1806-1811.	1.8	7

#	Article	IF	CITATIONS
73	Stearoyl-ACP and oleoyl-PC desaturase genes cosegregate with quantitative trait loci underlying high stearic and high oleic acid mutant phenotypes in sunflower. Theoretical and Applied Genetics, 2002, 104, 338-349.	3.6	83
74	Inheritance of high palmitic acid content in the sunflower mutant CAS-12 and its relationship with high oleic content. Plant Breeding, 2002, 121, 49-56.	1.9	18
75	Inheritance of plant height in the dwarf mutant 'Enana' of safflower. Plant Breeding, 2000, 119, 525-527.	1.9	3
76	Epistatic interaction among loci controlling the palmitic and the stearic acid levels in the seed oil of sunflower. Theoretical and Applied Genetics, 2000, 100, 105-111.	3.6	11
77	Genetic Relationships between Loci Controlling the High Stearic and the High Oleic Acid Traits in Sunflower. Crop Science, 2000, 40, 990-995.	1.8	5
78	Nondestructive Screening for Oleic and Linoleic Acid in Single Sunflower Achenes by Nearâ€Infrared Reflectance Spectroscopy. Crop Science, 1999, 39, 219-222.	1.8	34
79	Inheritance of high palmitic acid content in the seed oil of sunflower mutant CAS-5. Theoretical and Applied Genetics, 1999, 98, 496-501.	3.6	26
80	Genetic control of high stearic acid content in the seed oil of the sunflower mutant CAS-3. Theoretical and Applied Genetics, 1999, 99, 663-669.	3.6	39
81	Determination of seed oil content and fatty acid composition in sunflower through the analysis of intact seeds, husked seeds, meal and oil by near-infrared reflectance spectroscopy. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 547-555.	1.9	89
82	A rapid and simple approach to identify different sunflower oil types by means of near-infrared reflectance spectroscopy. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1883-1888.	1.9	13