Begoña Perez-Vich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5786745/publications.pdf

Version: 2024-02-01

82 papers 1,680 citations

257450 24 h-index 345221 36 g-index

84 all docs

84 docs citations

84 times ranked 841 citing authors

#	Article	IF	Citations
1	Determination of seed oil content and fatty acid composition in sunflower through the analysis of intact seeds, husked seeds, meal and oil by near-infrared reflectance spectroscopy. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 547-555.	1.9	89
2	Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theoretical and Applied Genetics, 2004, 109, 92-102.	3.6	85
3	Stearoyl-ACP and oleoyl-PC desaturase genes cosegregate with quantitative trait loci underlying high stearic and high oleic acid mutant phenotypes in sunflower. Theoretical and Applied Genetics, 2002, 104, 338-349.	3.6	83
4	Understanding <i>Orobanche</i> and <i>Phelipanche</i> –host plant interactions and developing resistance. Weed Research, 2009, 49, 8-22.	1.7	60
5	History of the race structure of Orobanche cumana and the breeding of sunflower for resistance to this parasitic weed: A review. Spanish Journal of Agricultural Research, 2015, 13, e10R01.	0.6	57
6	A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nature Plants, 2019, 5, 1211-1215.	9.3	53
7	Inheritance of resistance to broomrape (Orobanche cumana Wallr.) race F in a sunflower line derived from wild sunflower species. Plant Breeding, 2007, 126, 67-71.	1.9	50
8	Inheritance of resistance to sunflower broomrape (<i>Orobanche cumana</i> Wallr.) in an interspecific cross between <i>Helianthus annuus</i> and <i>Helianthus debilis</i> subsp <i> tardiflorus</i> Plant Breeding, 2012, 131, 220-221.	1.9	49
9	Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages. Frontiers in Plant Science, 2016, 7, 590.	3.6	45
10	Novel variation for the tocopherol profile in a sunflower created by mutagenesis and recombination. Plant Breeding, 2004, 123, 490-492.	1.9	44
11	Genetic control of high stearic acid content in the seed oil of the sunflower mutant CAS-3. Theoretical and Applied Genetics, 1999, 99, 663-669.	3.6	39
12	Registration of Four Sunflower Germplasms Resistant to Race F of Broomrape. Crop Science, 2004, 44, 1033-1034.	1.8	36
13	Development and characterization of genomic microsatellite markers in safflower (<i>Carthamus) Tj ETQq1 1 0.7</i>	784314 rg	BTJOverlook
14	Nondestructive Screening for Oleic and Linoleic Acid in Single Sunflower Achenes by Nearâ€Infrared Reflectance Spectroscopy. Crop Science, 1999, 39, 219-222.	1.8	34
15	Genetic diversity of <i>Orobanche cumana</i> populations from Spain assessed using <scp>SSR</scp> markers. Weed Research, 2013, 53, 279-289.	1.7	34
16	Identification and genetic characterization of a safflower mutant with a modified tocopherol profile. Plant Breeding, 2005, 124, 459-463.	1.9	33
17	Mapping minor QTL for increased stearic acid content in sunflower seed oil. Molecular Breeding, 2004, 13, 313-322.	2.1	31
18	Inheritance of high oleic acid content in safflower. Euphytica, 2009, 168, 61-69.	1.2	31

#	Article	IF	CITATIONS
19	Mapping of major and modifying genes for high oleic acid content in safflower. Molecular Breeding, 2012, 30, 1279-1293.	2.1	31
20	Indigenous highly virulent accessions of the sunflower root parasitic weed <i>Orobanche cumana</i> . Weed Research, 2008, 48, 169-178.	1.7	29
21	Molecular Mapping of Nuclear Male Sterility Genes in Sunflower. Crop Science, 2005, 45, 1851-1857.	1.8	28
22	Increased Virulence in Sunflower Broomrape (Orobanche cumana Wallr.) Populations from Southern Spain Is Associated with Greater Genetic Diversity. Frontiers in Plant Science, 2016, 7, 589.	3.6	28
23	Inheritance of high palmitic acid content in the seed oil of sunflower mutant CAS-5. Theoretical and Applied Genetics, 1999, 98, 496-501.	3.6	26
24	Genetic Mapping of the Tph1 Gene Controlling Beta-tocopherol Accumulation in Sunflower Seeds. Molecular Breeding, 2006, 17, 291-296.	2.1	25
25	A dominant avirulence gene in <i><scp>O</scp>robanche cumana</i> triggers <i><scp>O</scp>r5</i> resistance in sunflower. Weed Research, 2013, 53, 322-327.	1.7	25
26	Sunflower., 2009, , 155-232.		24
27	Marker-Assisted and Physiology-Based Breeding for Resistance to Root Parasitic Orobanchaceae. , 2013, , 369-391.		23
28	Use of Nearâ€Infrared Reflectance Spectroscopy for Selecting for High Stearic Acid Concentration in Single Husked Achenes of Sunflower. Crop Science, 2004, 44, 93-97.	1.8	22
29	Genetic and Molecular Analysis of High Gamma-Tocopherol Content in Sunflower. Crop Science, 2006, 46, 2015-2021.	1.8	22
30	Molecular analysis of the high stearic acid content in sunflower mutant CAS-14. Theoretical and Applied Genetics, 2006, 112, 867-875.	3.6	19
31	Inheritance of very high linoleic acid content and its relationship with nuclear male sterility in safflower. Plant Breeding, 2008, 127, 507-509.	1.9	19
32	Selection for contrasting seed tocopherol content in sunflower seeds. Journal of Agricultural Science, 2010, 148, 393-400.	1.3	19
33	Inheritance of high palmitic acid content in the sunflower mutant CAS-12 and its relationship with high oleic content. Plant Breeding, 2002, 121, 49-56.	1.9	18
34	Identification, characterisation and discriminatory power of microsatellite markers in the parasitic weed <i><scp>O</scp>robanche cumana</i> Weed Research, 2014, 54, 120-132.	1.7	18
35	Genetic study of recessive broomrape resistance in sunflower. Euphytica, 2016, 209, 419-428.	1.2	18
36	Development and characterisation of a Brassica carinata inbred line incorporating genes for low glucosinolate content from B. juncea. Euphytica, 2008, 164, 365-375.	1.2	16

#	Article	IF	CITATIONS
37	Molecular tagging and candidate gene analysis of the high gamma-tocopherol trait in safflower (Carthamus tinctorius L.). Molecular Breeding, 2011, 28, 367-379.	2.1	16
38	Genetic basis of unstable expression of high gamma-tocopherol content in sunflower seeds. BMC Plant Biology, 2012, 12, 71.	3.6	16
39	Development of SCAR markers linked to male sterility and very high linoleic acid content in safflower. Molecular Breeding, 2008, 22, 385-393.	2.1	15
40	Characterization of postâ€haustorial resistance to sunflower broomrape. Crop Science, 2020, 60, 1188-1198.	1.8	15
41	Developing Midstearic Acid Sunflower Lines from a High Stearic Acid Mutant. Crop Science, 2004, 44, 70-75.	1.8	14
42	Extent of cross-fertilization in Orobanche cumana Wallr Biologia Plantarum, 2013, 57, 559-562.	1.9	14
43	A rapid and simple approach to identify different sunflower oil types by means of near-infrared reflectance spectroscopy. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1883-1888.	1.9	13
44	Inheritance of High Stearic Acid Content in the Sunflower Mutant CASâ€14. Crop Science, 2006, 46, 22-29.	1.8	13
45	Transferability of non-genic microsatellite and gene-based sunflower markers to safflower. Euphytica, 2010, 175, 145-150.	1.2	13
46	Research on resistance to sunflower broomrape: an integrated vision. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D203.	1.4	13
47	Registration of Three Sunflower Germplasms with Quantitative Resistance to Race F of Broomrape. Crop Science, 2006, 46, 1406-1407.	1.8	12
48	Novel Safflower Germplasm with Increased Saturated Fatty Acid Content. Crop Science, 2009, 49, 127-132.	1.8	12
49	The Genetic Structure of WildOrobanche cumanaWallr. (Orobanchaceae) Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations. Scientific World Journal, The, 2014, 2014, 1-15.	2.1	12
50	Sunflower Broomrape (Orobanche cumana Wallr.)., 2015, , 129-155.		12
51	Epistatic interaction among loci controlling the palmitic and the stearic acid levels in the seed oil of sunflower. Theoretical and Applied Genetics, 2000, 100, 105-111.	3.6	11
52	Use of Near-Infrared Reflectance Spectroscopy for Selecting for High Stearic Acid Concentration in Single Husked Achenes of Sunflower. Crop Science, 2004, 44, 93.	1.8	11
53	Relationships between seed oil content and fatty acid composition in high stearic acid sunflower. Plant Breeding, 2007, 126, 503-508.	1.9	10
54	Transferability, amplification quality, and genome specificity of microsatellites in Brassica carinata and related species. Journal of Applied Genetics, 2010, 51, 123-131.	1.9	10

#	Article	IF	CITATIONS
55	The influence of flowering plant isolation on seed production and seed quality in Orobanche cumana. Weed Research, 2010, 50, 515-518.	1.7	10
56	Inheritance of the unpigmented plant trait in <i>Orobanche cumana</i> . Weed Research, 2011, 51, 151-156.	1.7	10
57	Molecular basis of the high-palmitic acid trait in sunflower seed oil. Molecular Breeding, 2016, 36, 1.	2.1	9
58	An SSR-SNP Linkage Map of the Parasitic Weed Orobanche cumana Wallr. Including a Gene for Plant Pigmentation. Frontiers in Plant Science, 2019, 10, 797.	3.6	9
59	Genetic and physiological characterization of sunflower resistance provided by the wild-derived OrDeb2 gene against highly virulent races of Orobanche cumana Wallr. Theoretical and Applied Genetics, 2022, 135, 501-525.	3.6	9
60	Inheritance of Medium Stearic Acid Content in the Seed Oil of a Sunflower Mutant CASâ€4. Crop Science, 2002, 42, 1806-1811.	1.8	7
61	Registration of Dw 89 and Dw 271 Dwarf Parental Lines of Sunflower. Crop Science, 2003, 43, 1140-1141.	1.8	7
62	Selection for contrasting tocopherol content and profile in <scp>E</scp> thiopian mustard. Plant Breeding, 2013, 132, 694-700.	1.9	7
63	Inheritance of reduced plant height in the sunflower line Dw 89. Plant Breeding, 2003, 122, 441-443.	1.9	6
64	Transgressive segregation for reduced glucosinolate content in Brassica carinata A. Braun. Plant Breeding, 2006, 125, 400-402.	1.9	6
65	Quantitative Trait Loci for Seed Tocopherol Content in Sunflower. Crop Science, 2012, 52, 786-794.	1.8	6
66	Developing Midstearic Acid Sunflower Lines from a High Stearic Acid Mutant. Crop Science, 2004, 44, 70.	1.8	6
67	Genetic Relationships between Loci Controlling the High Stearic and the High Oleic Acid Traits in Sunflower. Crop Science, 2000, 40, 990-995.	1.8	5
68	Inheritance of very high glucosinolate content in Ethiopian mustard seeds. Plant Breeding, 2009, 128, 278-281.	1.9	5
69	Expression of modified tocopherol content and profile in sunflower tissues. Journal of the Science of Food and Agriculture, 2012, 92, 351-357.	3.5	5
70	Changes in plastochromanol-8 and tocopherols during germination in Ethiopian mustard lines with contrasting tocopherol levels. Seed Science Research, 2014, 24, 101-112.	1.7	5
71	Tocopherols in Sunflower Seedlings under Light and Dark Conditions. Scientific World Journal, The, 2015, 2015, 1-11.	2.1	5
72	Genetic Diversity of a Germplasm Collection of Confectionery Sunflower Landraces from Spain. Crop Science, 2018, 58, 1972-1981.	1.8	4

#	Article	IF	CITATIONS
73	First Report of Sunflower Broomrape (<i>Orobanche cumana</i>) in Portugal. Plant Disease, 2019, 103, 2143-2143.	1.4	4
74	Inheritance of plant height in the dwarf mutant 'Enana' of safflower. Plant Breeding, 2000, 119, 525-527.	1.9	3
75	Accumulation dynamics of seed tocopherols in sunflower lines with modified tocopherol levels. Acta Physiologiae Plantarum, 2013, 35, 3157-3165.	2.1	3
76	Phylogenetic Relationships and Genetic Diversity among Orobanche cumana Wallr. and O. cernua L. (Orobanchaceae) Populations in the Iberian Peninsula. Helia, 2014, 37, .	0.4	3
77	Inheritance of increased seed tocopherol content in sunflower line IASTâ€413. Plant Breeding, 2011, 130, 540-543.	1.9	2
78	FRUIT AND OIL CHARACTERISTICS OF ADVANCED SELECTIONS FROM AN OLIVE BREEDING PROGRAM. Acta Horticulturae, 2013 , $415-419$.	0.2	2
79	Genetic Studies in Sunflower Broomrape. Helia, 2014, 37, .	0.4	1
80	Genetic Analysis of Reduced \hat{I}^3 -Tocopherol Content in Ethiopian Mustard Seeds. Scientific World Journal, The, 2016, 2016, 1-7.	2.1	1
81	Inheritance of deficient tocopherol accumulation in sunflower seeds. Journal of Genetics, 2011, 90, 489-491.	0.7	O

 $\text{Characterization of a $\hat{\textbf{I}}$3-tocopherol methyltransferase mutant gene in wild (Carthamus oxyacanthus M.) Tj ETQq0 0 \underset{\textbf{1.2}}{\textbf{0.0}} \text{rgBT /Oyerlock 10}$