Minhyung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5785968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. Journal of Controlled Release, 2005, 103, 209-219.	9.9	316
2	Polyethylene Glycol-Conjugated Copolymers for Plasmid DNA Delivery. Pharmaceutical Research, 2005, 22, 1-10.	3.5	256
3	Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharmaceutical Research, 2001, 18, 427-431.	3.5	215
4	Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. Journal of Controlled Release, 2005, 109, 330-344.	9.9	188
5	In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer's disease. Nature Neuroscience, 2019, 22, 524-528.	14.8	183
6	Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials, 2009, 30, 658-664.	11.4	169
7	Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. Journal of Controlled Release, 2020, 317, 273-281.	9.9	163
8	Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. Journal of Controlled Release, 2005, 106, 224-234.	9.9	129
9	Dexamethasone conjugated poly(amidoamine) dendrimer as a gene carrier for efficient nuclear translocation. International Journal of Pharmaceutics, 2006, 320, 171-178.	5.2	106
10	Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. Journal of Controlled Release, 2006, 114, 110-117.	9.9	105
11	Reducible Poly(oligo-D-arginine) for Enhanced Gene Expression in Mouse Lung by Intratracheal Injection. Molecular Therapy, 2010, 18, 734-742.	8.2	96
12	Efficient siRNA delivery using water soluble lipopolymer for anti-angiogenic gene therapy. Journal of Controlled Release, 2007, 118, 357-363.	9.9	93
13	A guanidinylated bioreducible polymer with high nuclear localization ability for gene delivery systems. Biomaterials, 2010, 31, 1798-1804.	11.4	93
14	Intratumoral Delivery of p2CMVmIL-12 Using Water-Soluble Lipopolymers. Molecular Therapy, 2001, 4, 130-138.	8.2	90
15	Extracellular HMGB1 Released by NMDA Treatment Confers Neuronal Apoptosis via RAGE-p38 MAPK/ERK Signaling Pathway. Neurotoxicity Research, 2011, 20, 159-169.	2.7	82
16	Dexamethasone-Conjugated Low Molecular Weight Polyethylenimine as a Nucleus-Targeting Lipopolymer Gene Carrier. Bioconjugate Chemistry, 2007, 18, 2029-2036.	3.6	81
17	Combination of local, nonviral IL12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model. Molecular Therapy, 2004, 9, 829-836.	8.2	79
18	Polymeric Gene Carriers. Critical Reviews in Eukaryotic Gene Expression, 2005, 15, 317-342.	0.9	79

Minhyung Lee

#	Article	IF	CITATIONS
19	Hypoxia-inducible Vascular Endothelial Growth Factor-engineered Mesenchymal Stem Cells Prevent Myocardial Ischemic Injury. Molecular Therapy, 2011, 19, 741-750.	8.2	78
20	MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials, 2014, 35, 1744-1754.	11.4	73
21	Dendrimer type bio-reducible polymer for efficient gene delivery. Journal of Controlled Release, 2012, 160, 592-600.	9.9	72
22	Therapeutic effects of a reducible poly (oligo-d-arginine) carrier with the heme oxygenase-1 gene in the treatment of hypoxic-ischemic brain injury. Biomaterials, 2010, 31, 9128-9134.	11.4	62
23	Hypoxia as a target for tissue specific gene therapy. Journal of Controlled Release, 2013, 172, 484-494.	9.9	59
24	Delivery of High Mobility Group Box-1 siRNA Using Brain-Targeting Exosomes for Ischemic Stroke Therapy. Journal of Biomedical Nanotechnology, 2019, 15, 2401-2412.	1.1	56
25	Sp1-Dependent Regulation of the RTP801 Promoter and Its Application to Hypoxia-Inducible VEGF Plasmid for Ischemic Disease. Pharmaceutical Research, 2004, 21, 736-741.	3.5	54
26	Engineering exosomes for pulmonary delivery of peptides and drugs to inflammatory lung cells by inhalation. Journal of Controlled Release, 2021, 330, 684-695.	9.9	51
27	Combined delivery of HMGB-1 box A peptide and S1PLyase siRNA in animal models of acute lung injury. Journal of Controlled Release, 2014, 175, 25-35.	9.9	50
28	Hypoxia-specific gene expression for ischemic disease gene therapy. Advanced Drug Delivery Reviews, 2009, 61, 614-622.	13.7	47
29	Production and application of HMGB1 derived recombinant RAGE-antagonist peptide for anti-inflammatory therapy in acute lung injury. European Journal of Pharmaceutical Sciences, 2018, 114, 275-284.	4.0	47
30	Amphiphilic peptide carrier for the combined delivery of curcumin and plasmid DNA into the lungs. Biomaterials, 2012, 33, 6542-6550.	11.4	46
31	Drug Delivery Systems for the Treatment of Ischemic Stroke. Pharmaceutical Research, 2013, 30, 2429-2444.	3.5	46
32	Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model. Journal of Neurosurgery: Spine, 2007, 7, 54-60.	1.7	43
33	Dexamethasone-loaded peptide micelles for delivery of the heme oxygenase-1 gene to ischemic brain. Journal of Controlled Release, 2012, 158, 131-138.	9.9	43
34	Targeted Gene Delivery to Ischemic Myocardium by Homing Peptide-Guided Polymeric Carrier. Molecular Pharmaceutics, 2013, 10, 378-385.	4.6	43
35	GLP-1 gene delivery for the treatment of type 2 diabetes. Molecular Therapy, 2003, 7, 478-483.	8.2	42
36	Dexamethasoneâ€conjugated polyethylenimine as an efficient gene carrier with an antiâ€apoptotic effect to cardiomyocytes. Journal of Gene Medicine, 2009, 11, 515-522.	2.8	42

#	Article	IF	CITATIONS
37	Combinational therapy of ischemic brain stroke by delivery of heme oxygenase-1 gene and dexamethasone. Biomaterials, 2011, 32, 306-315.	11.4	42
38	Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation. Nanoscale, 2018, 10, 8503-8514.	5.6	41
39	lschemic Injury-Specific Gene Expression in the Rat Spinal Cord Injury Model Using Hypoxia-Inducible System. Spine, 2005, 30, 2729-2734.	2.0	40
40	A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomaterials Science, 2018, 6, 407-417.	5.4	40
41	Brain gene delivery using histidine and arginine-modified dendrimers for ischemic stroke therapy. Journal of Controlled Release, 2021, 330, 907-919.	9.9	39
42	Proâ€Peptideâ€Reinforced, Mucusâ€Penetrating Pulmonary siRNA Delivery Mitigates Cytokine Storm in Pneumonia. Advanced Functional Materials, 2021, 31, 2008960.	14.9	39
43	Hypoxia-specific anti-RACE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model. Nanoscale, 2021, 13, 14166-14178.	5.6	38
44	Biomimetic cell membrane-coated DNA nanoparticles for gene delivery to glioblastoma. Journal of Controlled Release, 2021, 338, 22-32.	9.9	37
45	Hypoxia-inducible gene expression system using the erythropoietin enhancer and 3′-untranslated region for the VEGF gene therapy. Journal of Controlled Release, 2006, 115, 113-119.	9.9	36
46	Combined delivery of dexamethasone and plasmid DNA in an animal model of LPS-induced acute lung injury. Journal of Controlled Release, 2011, 156, 60-69.	9.9	36
47	Prevention of autoimmune insulitis by delivery of a chimeric plasmid encoding interleukin-4 and interleukin-10. Journal of Controlled Release, 2003, 88, 333-342.	9.9	35
48	The effect of biodegradable gelatin microspheres on the neuroprotective effects of high mobility group box 1 A box in the postischemic brain. Biomaterials, 2011, 32, 899-908.	11.4	35
49	Polymeric gene carrier for insulin secreting cells: Poly(l-lysine)-g-sulfonylurea for receptor mediated transfection. Journal of Controlled Release, 2005, 105, 164-176.	9.9	34
50	A hypoxia-inducible gene expression system using erythropoietin 3′ untranslated region for the gene therapy of rat spinal cord injury. Neuroscience Letters, 2007, 412, 118-122.	2.1	33
51	DNA delivery to the mitochondria sites using mitochondrial leader peptide conjugated polyethylenimine. Journal of Drug Targeting, 2007, 15, 115-122.	4.4	33
52	Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes. Journal of Controlled Release, 2017, 268, 305-313.	9.9	33
53	Expression, purification and characterization of TAT-high mobility group box-1A peptide as a carrier of nucleic acids. Biotechnology Letters, 2008, 30, 1331-1337.	2.2	31
54	Non-viral systemic delivery of Fas siRNA suppresses cyclophosphamide-induced diabetes in NOD mice. Journal of Controlled Release, 2010, 143, 88-94.	9.9	31

#	Article	IF	CITATIONS
55	Suicide gene therapy using reducible poly (oligo-d-arginine) for the treatment of spinal cord tumors. Biomaterials, 2011, 32, 9766-9775.	11.4	31
56	Glucagon-like Peptide-1 Plasmid Construction and Delivery for the Treatment of Type 2 Diabetes. Molecular Therapy, 2005, 12, 885-891.	8.2	29
57	Delivery of anti-microRNA-21 antisense-oligodeoxynucleotide using amphiphilic peptides for glioblastoma gene therapy. Journal of Drug Targeting, 2015, 23, 360-370.	4.4	29
58	Amphiphilic peptides with arginines and valines for the delivery of plasmid DNA. Journal of Cellular Biochemistry, 2011, 112, 1458-1466.	2.6	28
59	Ischemic brain imaging using fluorescent gold nanoprobes sensitive to reactive oxygen species. Journal of Controlled Release, 2013, 170, 352-357.	9.9	28
60	Dexamethasone onjugated Polyamidoamine Dendrimer for Delivery of the Heme Oxygenaseâ€1 Gene into the Ischemic Brain. Macromolecular Bioscience, 2015, 15, 1021-1028.	4.1	28
61	A self-assembled DNA-nanoparticle with a targeting peptide for hypoxia-inducible gene therapy of ischemic stroke. Biomaterials Science, 2019, 7, 2174-2190.	5.4	28
62	Prevention of autoimmune insulitis by delivery of interleukin-4 plasmid using a soluble and biodegradable polymeric carrier. Pharmaceutical Research, 2002, 19, 246-249.	3.5	27
63	Sp1-dependent regulation of the tissue inhibitor of metalloproteinases-1 promoter. Journal of Cellular Biochemistry, 2004, 91, 1260-1268.	2.6	26
64	Anti-cancer effect of R3V6 peptide-mediated delivery of an anti-microRNA-21 antisense-oligodeoxynucleotide in a glioblastoma animal model. Journal of Drug Targeting, 2017, 25, 132-139.	4.4	26
65	Synthesis and characterization of dexamethasoneâ€conjugated linear polyethylenimine as a gene carrier. Journal of Cellular Biochemistry, 2010, 110, 743-751.	2.6	25
66	Hypoxia/hepatoma dual specific suicide gene expression plasmid delivery using bio-reducible polymer for hepatocellular carcinoma therapy. Journal of Controlled Release, 2013, 171, 1-10.	9.9	25
67	Transcriptional and post-translational regulatory system for hypoxia specific gene expression using the erythropoietin enhancer and the oxygen-dependent degradation domain. Journal of Controlled Release, 2007, 121, 218-224.	9.9	24
68	Delivery of two-step transcription amplification exendin-4 plasmid system with arginine-grafted bioreducible polymer in type 2 diabetes animal model. Journal of Controlled Release, 2012, 162, 9-18.	9.9	24
69	Combined delivery of BCNU and VEGF siRNA using amphiphilic peptides for glioblastoma. Journal of Drug Targeting, 2014, 22, 156-164.	4.4	24
70	Intranasal delivery of a Fas-blocking peptide attenuates Fas-mediated apoptosis in brain ischemia. Scientific Reports, 2018, 8, 15041.	3.3	24
71	Non-viral adiponectin gene therapy into obese type 2 diabetic mice ameliorates insulin resistance. Journal of Controlled Release, 2006, 114, 118-125.	9.9	23
72	Cell type specific and glucose responsive expression of interleukin-4 by using insulin promoter and water soluble lipopolymer. Journal of Controlled Release, 2001, 75, 421-429.	9.9	22

#	Article	IF	CITATIONS
73	Effect of hypoxia-inducible VEGF gene expression on revascularization and graft function in mouse islet transplantation. Transplant International, 2011, 24, 307-314.	1.6	22
74	Delivery of the high-mobility group box 1 box A peptide using heparin in the acute lung injury animal models. Journal of Controlled Release, 2016, 234, 33-40.	9.9	22
75	Combined delivery of curcumin and the heme oxygenase-1 gene using cholesterol-conjugated polyamidoamine for anti-inflammatory therapy in acute lung injury. Phytomedicine, 2019, 56, 165-174.	5.3	22
76	Hypoxia targeting gene expression for breast cancer gene therapy. Advanced Drug Delivery Reviews, 2009, 61, 842-849.	13.7	21
77	Hypoxia-Inducible Vascular Endothelial Growth Factor Gene Therapy Using the Oxygen-Dependent Degradation Domain in Myocardial Ischemia. Pharmaceutical Research, 2010, 27, 2075-2084.	3.5	21
78	Delivery of Hypoxia and Glioma Dual-Specific Suicide Gene Using Dexamethasone Conjugated Polyethylenimine for Glioblastoma-Specific Gene Therapy. Molecular Pharmaceutics, 2014, 11, 938-950.	4.6	21
79	Simultaneous regulation of apoptotic gene silencing and angiogenic gene expression for myocardial infarction therapy: Single-carrier delivery of SHP-1 siRNA and VEGF-expressing pDNA. Journal of Controlled Release, 2016, 243, 182-194.	9.9	21
80	Hypoxia-specific, VEGF-expressing neural stem cell therapy for safe and effective treatment of neuropathic pain. Journal of Controlled Release, 2016, 226, 21-34.	9.9	21
81	Targeted delivery of Chil3/Chil4 siRNA to alveolar macrophages using ternary complexes composed of HMG and oligoarginine micelles. Nanoscale, 2020, 12, 933-943.	5.6	21
82	Enhanced protection of Ins-1 β cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. Journal of Drug Targeting, 2009, 17, 242-248.	4.4	20
83	Delivery of hypoxia-inducible VEGF gene to rat islets using polyethylenimine. Journal of Drug Targeting, 2009, 17, 1-9.	4.4	20
84	Amphiphilic peptides with arginine and valine residues as siRNA carriers. Journal of Cellular Biochemistry, 2012, 113, 619-628.	2.6	20
85	Anti-Inflammatory Therapeutic Effect of Adiponectin Gene Delivery Using a Polymeric Carrier in an Acute Lung Injury Model. Pharmaceutical Research, 2017, 34, 1517-1526.	3.5	19
86	A ternary-complex of a suicide gene, a RAGE-binding peptide, and polyethylenimine as a gene delivery system with anti-tumor and anti-angiogenic dual effects in glioblastoma. Journal of Controlled Release, 2018, 279, 40-52.	9.9	19
87	Dual-Functional Dendrimer Micelles with Glycyrrhizic Acid for Anti-Inflammatory Therapy of Acute Lung Injury. ACS Applied Materials & Interfaces, 2021, 13, 47313-47326.	8.0	19
88	Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy. Advanced Drug Delivery Reviews, 2011, 63, 678-687.	13.7	18
89	Efficient Gene Expression System Using the RTP801 Promoter in the Corpus Cavernosum of High-Cholesterol Diet-Induced Erectile Dysfunction Rats for Gene Therapy. Journal of Sexual Medicine, 2008, 5, 1355-1364.	0.6	17
90	A high mobility group Bâ€1 box A peptide combined with an artery wall binding peptide targets delivery of nucleic acids to smooth muscle cells. Journal of Cellular Biochemistry, 2009, 107, 163-170.	2.6	17

#	Article	IF	CITATIONS
91	Post-translational regulated and hypoxia-responsible VEGF plasmid for efficient secretion. Journal of Controlled Release, 2012, 160, 525-531.	9.9	17
92	Peptide micelle-mediated curcumin delivery for protection of islet β-cells under hypoxia. Journal of Drug Targeting, 2016, 24, 618-623.	4.4	16
93	Combined Delivery of a Lipopolysaccharideâ€Binding Peptide and the Heme Oxygenaseâ€1 Gene Using Deoxycholic Acidâ€Conjugated Polyethylenimine for the Treatment of Acute Lung Injury. Macromolecular Bioscience, 2017, 17, 1600490.	4.1	16
94	A RAGE-antagonist peptide potentiates polymeric micelle-mediated intracellular delivery of plasmid DNA for acute lung injury gene therapy. Nanoscale, 2020, 12, 13606-13617.	5.6	16
95	Intranasal delivery of self-assembled nanoparticles of therapeutic peptides and antagomirs elicits anti-tumor effects in an intracranial glioblastoma model. Nanoscale, 2021, 13, 14745-14759.	5.6	16
96	Erythropoietin gene delivery using an arginine-grafted bioreducible polymer system. Journal of Controlled Release, 2012, 157, 437-444.	9.9	15
97	Thymidine Kinase Gene Delivery Using Curcumin Loaded Peptide Micelles as a Combination Therapy for Glioblastoma. Pharmaceutical Research, 2015, 32, 528-537.	3.5	15
98	Deoxycholic Acid–Conjugated Polyethylenimine for Delivery of Heme Oxygenase-1 Gene in Rat Ischemic Stroke Model. Journal of Pharmaceutical Sciences, 2017, 106, 3524-3532.	3.3	15
99	Messenger RNA/polymeric carrier nanoparticles for delivery of heme oxygenase-1 gene in the post-ischemic brain. Biomaterials Science, 2020, 8, 3063-3071.	5.4	15
100	Synthesis of Novel Biodegradable Cationic Dendrimers. Macromolecular Rapid Communications, 2006, 27, 1608-1614.	3.9	14
101	Dexamethasone conjugation to polyamidoamine dendrimers G1 and G2 for enhanced transfection efficiency with an anti-inflammatory effect. Journal of Drug Targeting, 2012, 20, 667-677.	4.4	14
102	Efficient GLP-1 gene delivery using two-step transcription amplification plasmid system with a secretion signal peptide and arginine-grafted bioreducible polymer. Journal of Controlled Release, 2012, 157, 243-248.	9.9	14
103	Functional enhancement of beta cells in transplanted pancreatic islets by secretion signal peptide-linked exendin-4 gene transduction. Journal of Controlled Release, 2012, 159, 368-375.	9.9	14
104	Dexamethasone-conjugated polyethylenimine/MIF siRNA complex regulation of particulate matter-induced airway inflammation. Biomaterials, 2013, 34, 7453-7461.	11.4	14
105	Synergistically Combined Gene Delivery for Enhanced VEGF Secretion and Antiapoptosis. Molecular Pharmaceutics, 2013, 10, 3676-3683.	4.6	13
106	Inhalable Gene Delivery System Using a Cationic RAGE-Antagonist Peptide for Gene Delivery to Inflammatory Lung Cells. ACS Biomaterials Science and Engineering, 2019, 5, 2247-2257.	5.2	13
107	Human erythropoietin gene delivery for cardiac remodeling of myocardial infarction in rats. Journal of Controlled Release, 2013, 171, 24-32.	9.9	12
108	Targeted delivery of growth factors in ischemic stroke animal models. Expert Opinion on Drug Delivery, 2016, 13, 709-723.	5.0	12

#	Article	IF	CITATIONS
109	An efficient GLP-1 expression system using two-step transcription amplification. Journal of Controlled Release, 2006, 115, 316-321.	9.9	11
110	A comparison of non-viral vectors for gene delivery to pancreatic Î ² -cells: Delivering a hypoxia-inducible vascular endothelial growth factor gene to rat islets. International Journal of Molecular Medicine, 2009, 23, 757-62.	4.0	11
111	Characterization of hydrophobic anti-cancer drug-loaded amphiphilic peptides as a gene carrier. Journal of Cellular Biochemistry, 2011, 113, n/a-n/a.	2.6	11
112	Molecularly Engineered Islet Cell Clusters for Diabetes Mellitus Treatment. Cell Transplantation, 2012, 21, 1775-1789.	2.5	11
113	Human Erythropoietin Gene Delivery Using an Arginine-grafted Bioreducible Polymer System. Molecular Therapy, 2012, 20, 1360-1366.	8.2	11
114	HMGB1 modulation in pancreatic islets using a cell-permeable A-box fragment. Journal of Controlled Release, 2017, 246, 155-163.	9.9	11
115	Enrichment of vascular endothelial growth factor secreting mesenchymal stromal cells enhances therapeutic angiogenesis in a mouse model of hind limb ischemia. Cytotherapy, 2019, 21, 433-443.	0.7	11
116	Conjugation of prostate cancer-specific aptamers to polyethylene glycol-grafted polyethylenimine for enhanced gene delivery to prostate cancer cells. Journal of Industrial and Engineering Chemistry, 2019, 73, 182-191.	5.8	11
117	Interleukin-10 Plasmid Construction and Delivery for the Prevention of Type 1 Diabetes. Annals of the New York Academy of Sciences, 2006, 1079, 313-319.	3.8	10
118	Combinational delivery of HMGB1 A box and heparin for acute lung injury. Journal of Controlled Release, 2015, 213, e57.	9.9	10
119	Cardiac Usage of Reducible Poly(oligo-D-arginine) As a Gene Carrier for Vascular Endothelial Growth Factor Expression. PLoS ONE, 2015, 10, e0144491.	2.5	9
120	Improved islet transplantation outcome by the co-delivery of siRNAs for iNOS and 17β-estradiol using an R3V6 peptide carrier. Biomaterials, 2015, 38, 36-42.	11.4	9
121	Peptide Micelle-Mediated Delivery of Tissue-Specific Suicide Gene and Combined Therapy with Avastin in a Glioblastoma Model. Journal of Pharmaceutical Sciences, 2015, 104, 1461-1469.	3.3	8
122	Combined delivery of temozolomide and the thymidine kinase gene for treatment of glioblastoma. Journal of Drug Targeting, 2017, 25, 156-162.	4.4	8
123	Therapeutic effects of a mesenchymal stem cell‑based insulin‑like growth factor‑1/enhanced green fluorescent protein dual gene sorting system in a myocardial infarction rat model. Molecular Medicine Reports, 2018, 18, 5563-5571.	2.4	8
124	Expression and characterization of a recombinant high mobility group box 1 AB peptide with a 6-histidine tag for delivery of nucleic acids. Enzyme and Microbial Technology, 2008, 43, 410-416.	3.2	6
125	Conjugation of histidine derivatives to PEGylated poly(L-lysine-co-L-phenylalanine) copolymer as a non-viral gene carrier. Macromolecular Research, 2010, 18, 545-550.	2.4	6
126	Lung epithelial binding peptide-linked high mobility group box-1 A box for lung epithelial cell-specific delivery of DNA. Journal of Drug Targeting, 2011, 19, 589-596.	4.4	6

Minhyung Lee

#	Article	IF	CITATIONS
127	Delivery of Hypoxia-Inducible Heme Oxygenase-1 Gene for Site-Specific Gene Therapy in the Ischemic Stroke Animal Model. Pharmaceutical Research, 2016, 33, 2250-2258.	3.5	6
128	Preparation and characterization of polyamidoamine dendrimers conjugated with cholesteryl-dipeptide as gene carriers in HeLa cells. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 976-994.	3.5	6
129	Synthesis and characterization of Poly(L-lysine-co-L-proline) as a non-viral gene delivery vector. Macromolecular Research, 2006, 14, 129-131.	2.4	5
130	Mitochondria targeting delivery of nucleic acids. Expert Opinion on Drug Delivery, 2008, 5, 879-887.	5.0	5
131	VEGF receptor binding peptide-linked amphiphilic peptide with arginines and valines for endothelial cell-specific gene delivery. Journal of Drug Targeting, 2012, 20, 574-581.	4.4	5
132	The box a domain of high mobility group boxâ€1 protein as an efficient siRNA carrier with antiâ€inflammatory effects. Journal of Cellular Biochemistry, 2012, 113, 122-131.	2.6	5
133	Post-translational regulation of gene expression using the ATF4 oxygen-dependent degradation domain for hypoxia-specific gene therapy. Journal of Drug Targeting, 2013, 21, 830-836.	4.4	5
134	Delivery of MiRNA-92a Inhibitor Using RP1-Linked Peptide Elicits Anti-Inflammatory Effects in an Acute Lung Injury Model. Journal of Biomedical Nanotechnology, 2021, 17, 1273-1283.	1.1	5
135	VEGF receptor binding peptideâ€linked high mobility box groupâ€1 box A as a targeting gene carrier for hypoxic endothelial cells. Journal of Cellular Biochemistry, 2010, 110, 1094-1100.	2.6	4
136	Improved transplantation outcome through delivery of DNA encoding secretion signal peptide-linked glucagon-like peptide-1 into mouse islets. Transplant International, 2013, 26, 443-452.	1.6	4
137	Combination of TAT-HMGB1A and R3V6 amphiphilic peptide for plasmid DNA delivery with anti-inflammatory effect. Journal of Drug Targeting, 2014, 22, 739-747.	4.4	4
138	A Gene and Neural Stem Cell Therapy Platform Based on Neuronal Cell Type-Inducible Gene Overexpression. Yonsei Medical Journal, 2015, 56, 1036.	2.2	4
139	Therapeutic response to HMGB1-R3V6-conjugated Ym1/Ym2 siRNA complex in ovalbumin-induced murine asthma. Journal of Controlled Release, 2015, 213, e102.	9.9	3
140	RAGE-binding peptide-conjugated polyethylenimine as a dual-functional carrier: A RAGE-mediated gene carrier and an anti-angiogenic reagent. Journal of Industrial and Engineering Chemistry, 2018, 67, 284-292.	5.8	3
141	R3V6 Amphiphilic Peptide with High Mobility Group Box 1A Domain as an Efficient Carrier for Gene Delivery. Bulletin of the Korean Chemical Society, 2013, 34, 3665-3670.	1.9	3
142	Glia/ischemia tissue dual specific gene expression vector for glioblastoma gene therapy. Journal of Controlled Release, 2011, 152, e146-e148.	9.9	2
143	The effect of curcumin delivery using peptide micelles to pancreatic beta cells under the hypoxia condition. Journal of Controlled Release, 2015, 213, e118-e119.	9.9	2
144	Reducible Poly(Oligo-d-Arginine) as an Efficient Carrier of the Thymidine Kinase Gene in the Intracranial Glioblastoma Animal Model. Journal of Pharmaceutical Sciences, 2015, 104, 3743-3751.	3.3	2

#	Article	IF	CITATIONS
145	Peptide Micelles for Anti-cancer Drug Delivery in an Intracranial Glioblastoma Animal Model. Bulletin of the Korean Chemical Society, 2014, 35, 3030-3034.	1.9	2
146	Gene regulation for effective gene therapy. Advanced Drug Delivery Reviews, 2009, 61, 487-488.	13.7	1
147	Cancer Cell Respiration: Hypoxia and pH in Solid Tumors. , 2013, , 183-206.		1
148	Enhanced Incretin Effects of Exendin-4 Expressing Chimeric Plasmid Based On Two-Step Transcription Amplification System with Dendritic Bioreducible Polymer for the Treatment of Type 2 Diabetes. , 2013, 1, 7-15.		1
149	Physiological Stress Responsive Gene Regulation Systems for Tissue Targeting. , 2010, , 587-604.		0
150	Deoxycholic acid-polymer conjugates for gene delivery to ischemic stroke. Journal of Controlled Release, 2015, 213, e63.	9.9	0
151	Gene delivery to pancreatic islets for effective transplantation in diabetic animal. Journal of Industrial and Engineering Chemistry, 2017, 56, 45-54.	5.8	0
152	Combination Therapy by Tissue-Specific Suicide Gene and Bevacizumab in Intramedullary Spinal Cord Tumor. Yonsei Medical Journal, 2020, 61, 1042.	2.2	0
153	Pulmonary delivery of a recombinant RAGE antagonist peptide derived from high-mobility group box-1 in a bleomycin-induced pulmonary fibrosis animal model. Journal of Drug Targeting, 2022, , 1-11.	4.4	0