
Carolyn J Cassady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/578576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Study of Enhanced Protonation by Chromium(III) in Electrospray Ionization: A Superacid Bound to a Peptide. Journal of the American Society for Mass Spectrometry, 2020, 31, 308-318.	2.8	4
2	Surface Effects of Iron Oxide Nanoparticles on the MALDI In-Source Decay Analysis of Glycans and Peptides. ACS Applied Nano Materials, 2019, 2, 3999-4008.	5.0	9
3	Experimental and Computational Study of the Gas-Phase Acidities of Acidic Di- and Tripeptides. Journal of Physical Chemistry B, 2019, 123, 606-613.	2.6	3
4	Bond dissociation energies in glycine, alanine, and dipeptide deprotonated anions for use in analyzing collision-induced dissociation processes. International Journal of Mass Spectrometry, 2018, 429, 212-226.	1.5	6
5	Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides. Journal of the American Society for Mass Spectrometry, 2018, 29, 1021-1035.	2.8	19
6	The use of chromium(III) complexes to enhance peptide protonation by electrospray ionization mass spectrometry, Journal of Mass Spectrometry, 2018, 53, 1198-1206.	1.6	1
7	Electron transfer dissociation mass spectrometry of acidic phosphorylated peptides cationized with trivalent praseodymium. Journal of Mass Spectrometry, 2018, 53, 1178-1188.	1.6	0
8	Effects of acidic peptide size and sequence on trivalent praseodymium adduction and electron transfer dissociation mass spectrometry. Journal of Mass Spectrometry, 2017, 52, 218-229.	1.6	6
9	Optimization of electrospray ionization conditions to enhance formation of doubly protonated peptide ions with and without addition of chromium(III). Rapid Communications in Mass Spectrometry, 2017, 31, 1129-1136.	1.5	6
10	Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers. Journal of the American Society for Mass Spectrometry, 2017, 28, 409-418.	2.8	16
11	The Effects of Trivalent Lanthanide Cationization on the Electron Transfer Dissociation of Acidic Fibrinopeptide B and its Analogs. Journal of the American Society for Mass Spectrometry, 2016, 27, 1499-1509.	2.8	8
12	Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides. Journal of the American Society for Mass Spectrometry, 2016, 27, 847-855.	2.8	8
13	Spectroscopic and biological activity studies of the chromium-binding peptide EEEEGDD. Journal of Biological Inorganic Chemistry, 2016, 21, 369-381.	2.6	13
14	An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides. Journal of Physical Chemistry B, 2015, 119, 9661-9669.	2.6	13
15	The Use of Chromium(III) to Supercharge Peptides by Protonation at Low Basicity Sites. Journal of the American Society for Mass Spectrometry, 2015, 26, 347-358.	2.8	8
16	Gas-Phase Acidities of Phosphorylated Amino Acids. Journal of Physical Chemistry B, 2015, 119, 14604-14621.	2.6	6
17	An Experimental and Computational Investigation into the Gas-Phase Acidities of Tyrosine and Phenylalanine: Three Structures for Deprotonated Tyrosine. Journal of Physical Chemistry B, 2014, 118, 12630-12643.	2.6	12
18	MALDI MS In-Source Decay of Glycans Using a Glutathione-Capped Iron Oxide Nanoparticle Matrix. Analytical Chemistry, 2014, 86, 8496-8503.	6.5	37

CAROLYN J CASSADY

#	Article	IF	CITATIONS
19	Paramagnetic 19F NMR and electrospray ionization mass spectrometric studies of substituted pyridine complexes of chromium(III): Models for potential use of 19F NMR to probe Cr(III)–nucleotide interaction. Polyhedron, 2013, 64, 136-141.	2.2	4
20	Fundamental Thermochemical Properties of Amino Acids: Gas-Phase and Aqueous Acidities and Gas-Phase Heats of Formation. Journal of Physical Chemistry B, 2012, 116, 2905-2916.	2.6	52
21	A Comparison of the Effects of Amide and Acid Groups at the C-Terminus on the Collision-Induced Dissociation of Deprotonated Peptides. Journal of the American Society for Mass Spectrometry, 2012, 23, 1544-1557.	2.8	13
22	Gas-Phase Deprotonation of the Peptide Backbone for Tripeptides and Their Methyl Esters with Hydrogen and Methyl Side Chains. Journal of Physical Chemistry B, 2012, 116, 14844-14858.	2.6	16
23	Effects of transition metal ion coordination on the collisionâ€induced dissociation of polyalanines. Journal of Mass Spectrometry, 2011, 46, 1099-1107.	1.6	16
24	Characterization of the Organic Component of Low-Molecular-Weight Chromium-Binding Substance and Its Binding of Chromium. Journal of Nutrition, 2011, 141, 1225-1232.	2.9	43
25	A comparison of positive and negative ion collisionâ€induced dissociation for model heptapeptides with one basic residue. Journal of Mass Spectrometry, 2010, 45, 297-305.	1.6	24
26	Sequence of the peptide component of lowâ€molecularâ€weight chromiumâ€binding substance. FASEB Journal, 2010, 24, 537.5.	0.5	0
27	Mass Spectrometric and Spectroscopic Studies of the Nutritional Supplement Chromium(III) Nicotinate. Biological Trace Element Research, 2009, 130, 114-130.	3.5	11
28	Negative ion production from peptides and proteins by matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 4066-4072.	1.5	20
29	The effects of chromium(III) coordination on the dissociation of acidic peptides. Journal of Mass Spectrometry, 2008, 43, 773-781.	1.6	13
30	Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides. International Journal of Mass Spectrometry, 2007, 265, 213-223.	1.5	55
31	Low-molecular-weight chromium-binding substance from chicken liver and American alligator liver. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 144, 423-431.	1.6	13
32	C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at theC-terminus. Journal of Mass Spectrometry, 2006, 41, 939-949.	1.6	27
33	A comparison of negative and positive ion time-of-flight post-source decay mass spectrometry for peptides containing basic residues. International Journal of Mass Spectrometry, 2003, 222, 363-381.	1.5	45
34	Effects of peptide chain length on the gas-phase proton transfer properties of doubly-protonated ions from bradykinin and its N-terminal fragment peptides. International Journal of Mass Spectrometry, 2002, 219, 115-131.	1.5	22
35	Dissociation of multiply charged negative ions for hirudin (54–65), fibrinopeptide B, and insulin A (oxidized). Journal of the American Society for Mass Spectrometry, 2001, 12, 105-116.	2.8	62
36	Gas-phase basicities for ions from bradykinin and its des-arginine analogues. Journal of Mass Spectrometry, 2001, 36, 875-881.	1.6	26

CAROLYN J CASSADY

#	Article	IF	CITATIONS
37	Effects of cysteic acid groups on the gas-phase reactivity and dissociation of [M + 4H]4+ ions from insulin chain B. Journal of the American Society for Mass Spectrometry, 1999, 10, 928-940.	2.8	15
38	Negative ion matrix-assisted laser desorption/ionization time-of-flight post-source decay calibration by using fibrinopeptide B. Journal of the American Society for Mass Spectrometry, 1998, 9, 540-544.	2.8	12
39	Gas-phase reactivity and molecular modeling studies on triply protonated dodecapeptides that contain four basic residues. Journal of the American Society for Mass Spectrometry, 1998, 9, 716-723.	2.8	18
40	Effects of basic site proximity on deprotonation and hydrogen/deuterium exchange reactions for model dodecapeptide ions containing lysine and glycine. International Journal of Mass Spectrometry and Ion Processes, 1998, 175, 159-171.	1.8	13
41	Negative Ion Postsource Decay Time-of-Flight Mass Spectrometry of Peptides Containing Acidic Amino Acid Residues. Analytical Chemistry, 1998, 70, 5122-5128.	6.5	37
42	Collision-induced dissociation and post-source decay of model dodecapeptide ions containing lysine and glycine. International Journal of Mass Spectrometry and Ion Processes, 1997, 171, 135-145.	1.8	10
43	Reactivity and gas-phase acidity determinations of small peptide ions consisting of 11 to 14 amino acid residues. , 1997, 32, 959-967.		43
44	Matrix-assisted laser desorption/ionization of small biomolecules impregnated in silica prepared by a sol-gel process. Rapid Communications in Mass Spectrometry, 1997, 11, 1505-1508.	1.5	10
45	Ab Initio and Experimental Studies on the Protonation of Glucose in the Gas Phase. Journal of the American Chemical Society, 1996, 118, 10515-10524.	13.7	70
46	Elucidation of Isomeric Structures for Ubiquitin [M+12H]12+ Ions Produced by Electrospray Ionization Mass Spectrometry. , 1996, 31, 247-254.		116
47	Determination of the Gas-Phase Basicitiesof Proline and its Di- and Tripeptides withGlycine:The Enhanced Basicity ofProlylproline. , 1996, 31, 1345-1350.		38
48	Anion and Cation Post-source Decay Time-of-flight Mass Spectrometry of Small Peptides: Substance P, Angiotensin II, and Renin Substrate. Rapid Communications in Mass Spectrometry, 1996, 10, 1678-1682.	1.5	23
49	Apparent gas-phase acidities of multiply protonated peptide ions: Ubiquitin, insulin B, and renin substrate. Journal of the American Society for Mass Spectrometry, 1996, 7, 1211-1218.	2.8	60
50	Gas-phase basicities of histidine and lysine and their selected di- and tripeptides. Journal of the American Society for Mass Spectrometry, 1996, 7, 1203-1210.	2.8	61
51	An electrospray ionization mass spectrometry study of copper adducts of protonated ubiquitin. Journal of the American Society for Mass Spectrometry, 1995, 6, 521-524.	2.8	23
52	Experimental and Ab Initio Studies on Protonations of Alanine and Small Peptides of Alanine and Glycine. Journal of Organic Chemistry, 1995, 60, 1704-1712.	3.2	75
53	Deprotonation reactions of multiply protonated ubiquitin ions. Rapid Communications in Mass Spectrometry, 1994, 8, 394-400.	1.5	78
54	Gas-phase basicities of serine and dipeptides of serine and glycine. Journal of the American Society for Mass Spectrometry, 1994, 5, 718-723.	2.8	35

CAROLYN J CASSADY

#	Article	IF	CITATIONS
55	Size-Specific Reactivity of Agx+ and Cux+ (x = 1-5) with Alcohols in the Gas Phase. Organometallics, 1994, 13, 3077-3084.	2.3	17
56	Ab Initio Studies of Neutral and Protonated Triglycines: Comparison of Calculated and Experimental Gas-Phase Basicity. Journal of the American Chemical Society, 1994, 116, 11512-11521.	13.7	82
57	Collison-induced dissociation and photodissociation of nitroaromatic molecular ions: A unique isomerization forp-nitrotoluene andp-ethylnitrobenzene ions. Organic Mass Spectrometry, 1993, 28, 1650-1657.	1.3	7
58	Experimental and ab initio studies of the gas-phase basicities of polyglycines. Journal of the American Chemical Society, 1993, 115, 10812-10822.	13.7	159
59	Production and fragmentation of molybdenum oxide ions. Journal of Chemical Physics, 1992, 96, 691-699.	3.0	22
60	Gas-phase reactions of molybdenum oxide ions with small hydrocarbons. Organometallics, 1992, 11, 2367-2377.	2.3	41
61	Gas-phase reactions of silver cluster ions produced by fast atom bombardment. Chemical Physics Letters, 1992, 191, 111-116.	2.6	21
62	Gas-phase reactions of tantalum carbide cluster ions with deuterium and small hydrocarbons. Journal of the American Chemical Society, 1990, 112, 4788-4797.	13.7	62
63	Total mass emissions from a hazardous waste incinerator. Journal of Hazardous Materials, 1988, 18, 99-106.	12.4	1
64	Structural determination of [C7H7O]+ ions in the gas phase by ion cyclotron resonance spectrometry. Organic Mass Spectrometry, 1983, 18, 378-387.	1.3	27