Roxane Simeone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5785413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death. PLoS Pathogens, 2012, 8, e1002507.	4.7	479
2	ESX secretion systems: mycobacterial evolution to counter host immunity. Nature Reviews Microbiology, 2016, 14, 677-691.	28.6	306
3	Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nature Genetics, 2013, 45, 172-179.	21.4	264
4	p62 and NDP52 Proteins Target Intracytosolic Shigella and Listeria to Different Autophagy Pathways. Journal of Biological Chemistry, 2011, 286, 26987-26995.	3.4	257
5	ESX-1 dependent impairment of autophagic flux by <i><i>Mycobacterium tuberculosis</i></i> i>in human dendritic cells. Autophagy, 2012, 8, 1357-1370.	9.1	237
6	ESX/type VII secretion systems and their role in host–pathogen interaction. Current Opinion in Microbiology, 2009, 12, 4-10.	5.1	217
7	The Macrophage: A Disputed Fortress in the Battle against Mycobacterium tuberculosis. Frontiers in Microbiology, 2017, 8, 2284.	3.5	195
8	Disruption of the ESXâ€5 system of <i>Mycobacterium tuberculosis</i> causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Molecular Microbiology, 2012, 83, 1195-1209.	2.5	178
9	Cytosolic Access of Mycobacterium tuberculosis: Critical Impact of Phagosomal Acidification Control and Demonstration of Occurrence In Vivo. PLoS Pathogens, 2015, 11, e1004650.	4.7	177
10	ESX-1 and phthiocerol dimycocerosates of <i>Mycobacterium tuberculosis</i> act in concert to cause phagosomal rupture and host cell apoptosis. Cellular Microbiology, 2017, 19, e12726.	2.1	174
11	Characterization of <i>Mycobacterium orygis</i> as <i>M. tuberculosis</i> Complex Subspecies. Emerging Infectious Diseases, 2012, 18, 653-655.	4.3	170
12	The distinct fate of smooth and rough <i>Mycobacterium abscessus</i> variants inside macrophages. Open Biology, 2016, 6, 160185.	3.6	132
13	Strong Immunogenicity and Cross-Reactivity of Mycobacterium tuberculosis ESX-5 Type VII Secretion -Encoded PE-PPE Proteins Predicts Vaccine Potential. Cell Host and Microbe, 2012, 11, 352-363.	11.0	102
14	Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection. Cell Reports, 2017, 18, 2752-2765.	6.4	98
15	Insights on the Emergence of Mycobacterium tuberculosis from the Analysis of Mycobacterium kansasii. Genome Biology and Evolution, 2015, 7, 856-870.	2.5	79
16	ESAT-6 Secretion-Independent Impact of ESX-1 Genes espF and espG1 on Virulence of Mycobacterium tuberculosis. Journal of Infectious Diseases, 2011, 203, 1155-1164.	4.0	66
17	Spontaneous Phthiocerol Dimycocerosate-Deficient Variants of Mycobacterium tuberculosis Are Susceptible to Gamma Interferon-Mediated Immunity. Infection and Immunity, 2011, 79, 2829-2838.	2.2	63
18	ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis, 2015, 95, S150-S154.	1.9	56

ROXANE SIMEONE

#	Article	IF	CITATIONS
19	Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in <i>Mycobacteriumâ€∫tuberculosis</i> . FEBS Journal, 2010, 277, 2715-2725.	4.7	49
20	Molecular dissection of the biosynthetic relationship between phthiocerol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS Journal, 2007, 274, 1957-1969.	4.7	41
21	Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants. BioEssays, 2009, 31, 378-388.	2.5	41
22	Identification of the Missing trans -Acting Enoyl Reductase Required for Phthiocerol Dimycocerosate and Phenolglycolipid Biosynthesis in Mycobacterium tuberculosis. Journal of Bacteriology, 2007, 189, 4597-4602.	2.2	35
23	Mycobacteria–host interactions in human bronchiolar airway organoids. Molecular Microbiology, 2022, 117, 682-692.	2.5	32
24	Functional Characterisation of Three O-methyltransferases Involved in the Biosynthesis of Phenolglycolipids in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e58954.	2.5	31
25	Perspectives on mycobacterial vacuole-to-cytosol translocation: the importance of cytosolic access. Cellular Microbiology, 2016, 18, 1070-1077.	2.1	26
26	Phthiocerol Dimycocerosates From Mycobacterium tuberculosis Increase the Membrane Activity of Bacterial Effectors and Host Receptors. Frontiers in Cellular and Infection Microbiology, 2020, 10, 420.	3.9	23
27	Single Cell Measurements of Vacuolar Rupture Caused by Intracellular Pathogens. Journal of Visualized Experiments, 2013, , e50116.	0.3	21
28	Breaching the phagosome, the case of the tuberculosis agent. Cellular Microbiology, 2021, 23, e13344.	2.1	18