Yegnanarayana Bayya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5784157/publications.pdf

Version: 2024-02-01

181 papers 6,519 citations

43 h-index 79698 73 g-index

185 all docs 185
docs citations

185 times ranked 2088 citing authors

#	Article	IF	CITATIONS
1	Group delay spectrogram of speech signals without phase wrapping. Journal of the Acoustical Society of America, 2022, 151, 2181-2191.	1.1	3
2	A neural network approach for speech activity detection for Apollo corpus. Computer Speech and Language, 2021, 65, 101137.	4. 3	4
3	Extraction and Utilization of Excitation Information of Speech: A Review. Proceedings of the IEEE, 2021, 109, 1920-1941.	21.3	6
4	Time Delay Estimation from Mixed Multispeaker Speech Signals Using Single Frequency Filtering. Circuits, Systems, and Signal Processing, 2020, 39, 1988-2005.	2.0	7
5	Detection of glottal closure instant and glottal open region from speech signals using spectral flatness measure. Speech Communication, 2020, 116, 30-43.	2.8	9
6	Analysis and classification of phonation types in speech and singing voice. Speech Communication, 2020, 118, 33-47.	2.8	14
7	Excitation Features of Speech for Emotion Recognition Using Neutral Speech as Reference. Circuits, Systems, and Signal Processing, 2020, 39, 4459-4481.	2.0	19
8	Determination of glottal closure instants from clean and telephone quality speech signals using single frequency filtering. Computer Speech and Language, 2020, 64, 101097.	4.3	7
9	Comparison of Glottal Closure Instants Detection Algorithms for Emotional Speech. , 2020, , .		8
10	Subsegmental level analysis of high arousal speech using the zero-time windowing method. Journal of the Acoustical Society of America, 2019, 145, 551-561.	1.1	1
11	Analysis of aperiodicity in artistic Noh singing voice using an impulse sequence representation of excitation source. Journal of the Acoustical Society of America, 2019, 146, 4446-4457.	1.1	8
12	Spectral and temporal manipulations of SFF envelopes for enhancement of speech intelligibility in noise. Computer Speech and Language, 2019, 54, 86-105.	4.3	8
13	Significance of phase in single frequency filtering outputs of speech signals. Speech Communication, 2018, 97, 66-72.	2.8	11
14	Extraction of Fundamental Frequency From Degraded Speech Using Temporal Envelopes at High SNR Frequencies. IEEE/ACM Transactions on Audio Speech and Language Processing, 2017, 25, 829-838.	5 . 8	17
15	Epoch extraction from emotional speech using single frequency filtering approach. Speech Communication, 2017, 86, 52-63.	2.8	46
16	Determination of glottal open regions by exploiting changes in the vocal tract system characteristics. Journal of the Acoustical Society of America, 2016, 140, 666-677.	1.1	10
17	Study of characteristics of aperiodicity in Noh voices. Journal of the Acoustical Society of America, 2015, 137, 3411-3421.	1.1	29
18	Single Frequency Filtering Approach for Discriminating Speech and Nonspeech. IEEE/ACM Transactions on Audio Speech and Language Processing, 2015, 23, 705-717.	5.8	74

#	Article	IF	CITATIONS
19	Analysis of singing voice for epoch extraction using Zero Frequency Filtering method., 2015,,.		19
20	Study of the effects of vocal tract constriction on glottal vibration. Journal of the Acoustical Society of America, 2014, 136, 1932-1941.	1.1	35
21	Extraction of formant bandwidths using properties of group delay functions. Speech Communication, 2014, 63-64, 70-83.	2.8	4
22	Spectro-temporal analysis of speech signals using zero-time windowing and group delay function. Speech Communication, 2013, 55, 782-795.	2.8	49
23	Synthesis of laughter by modifying excitation characteristics. Journal of the Acoustical Society of America, 2013, 133, 3072-3082.	1.1	18
24	Effect of glottal dynamics in the production of shouted speech. Journal of the Acoustical Society of America, 2013, 133, 3050-3061.	1.1	63
25	Acoustic analysis of trill sounds. Journal of the Acoustical Society of America, 2012, 131, 3141-3152.	1.1	19
26	Edge extraction using zero-frequency resonator. Signal, Image and Video Processing, 2012, 6, 287-300.	2.7	4
27	Spotting glottal stop in Amharic in continuous speech. Computer Speech and Language, 2012, 26, 293-305.	4.3	3
28	Performance of an Event-Based Instantaneous Fundamental Frequency Estimator for Distant Speech Signals. IEEE Transactions on Audio Speech and Language Processing, 2011, 19, 1853-1864.	3.2	23
29	Speech Communication and Signal Processing. Sadhana - Academy Proceedings in Engineering Sciences, 2011, 36, 551-553.	1.3	0
30	Group delay functions and its applications in speech technology. Sadhana - Academy Proceedings in Engineering Sciences, 2011, 36, 745-782.	1.3	85
31	Epoch-based analysis of speech signals. Sadhana - Academy Proceedings in Engineering Sciences, 2011, 36, 651-697.	1.3	49
32	Laplacian of smoothed image as representation for face recognition. , $2011, \ldots$		1
33	Study of robustness of zero frequency resonator method for extraction of fundamental frequency. , 2011, , .		12
34	Classification of sport videos using edge-based features and autoassociative neural network models. Signal, Image and Video Processing, 2010, 4, 61-73.	2.7	50
35	On the use of phase of the Fourier transform for face recognition under variations in illumination. Signal, Image and Video Processing, 2010, 4, 353-358.	2.7	26
36	Spectral Mapping Using Artificial Neural Networks for Voice Conversion. IEEE Transactions on Audio Speech and Language Processing, 2010, 18, 954-964.	3.2	171

#	Article	IF	Citations
37	Voiced/Nonvoiced Detection Based on Robustness of Voiced Epochs. IEEE Signal Processing Letters, 2010, 17, 273-276.	3.6	82
38	Perceived loudness of speech based on the characteristics of glottal excitation source. Journal of the Acoustical Society of America, 2009, 126, 2061-2071.	1.1	59
39	Event-Based Instantaneous Fundamental Frequency Estimation From Speech Signals. IEEE Transactions on Audio Speech and Language Processing, 2009, 17, 614-624.	3.2	170
40	Determining Mixing Parameters From Multispeaker Data Using Speech-Specific Information. IEEE Transactions on Audio Speech and Language Processing, 2009, 17, 1196-1207.	3.2	32
41	Duration modification using glottal closure instants and vowel onset points. Speech Communication, 2009, 51, 1263-1269.	2.8	71
42	Intonation modeling for Indian languages. Computer Speech and Language, 2009, 23, 240-256.	4.3	65
43	Characterization of Glottal Activity From Speech Signals. IEEE Signal Processing Letters, 2009, 16, 469-472.	3.6	115
44	Speaker change detection in casual conversations using excitation source features. Speech Communication, 2008, 50, 153-161.	2.8	7
45	Multimodal person authentication using speech, face and visual speech. Computer Vision and Image Understanding, 2008, 109, 44-55.	4.7	26
46	Extraction and representation of prosodic features for language and speaker recognition. Speech Communication, 2008, 50, 782-796.	2.8	169
47	Epoch Extraction From Speech Signals. IEEE Transactions on Audio Speech and Language Processing, 2008, 16, 1602-1613.	3.2	497
48	Activity Modeling Using Event Probability Sequences. IEEE Transactions on Image Processing, 2008, 17, 594-607.	9.8	52
49	Determination of Instants of Significant Excitation in Speech Using Hilbert Envelope and Group Delay Function. IEEE Signal Processing Letters, 2007, 14, 762-765.	3.6	108
50	Determining Number of Speakers From Multispeaker Speech Signals Using Excitation Source Information. IEEE Signal Processing Letters, 2007, 14, 481-484.	3.6	43
51	Face Verification Using Template Matching. IEEE Transactions on Information Forensics and Security, 2007, 2, 636-641.	6.9	21
52	Modeling durations of syllables using neural networks. Computer Speech and Language, 2007, 21, 282-295.	4.3	78
53	Significance of image representation for face verification. Signal, Image and Video Processing, 2007, 1, 225-237.	2.7	19
54	Combining evidence from residual phase and MFCC features for speaker recognition. IEEE Signal Processing Letters, 2006, 13, 52-55.	3.6	331

#	Article	IF	Citations
55	Extraction of speaker-specific excitation information from linear prediction residual of speech. Speech Communication, 2006, 48, 1243-1261.	2.8	139
56	Prosody modification using instants of significant excitation. IEEE Transactions on Audio Speech and Language Processing, 2006, 14, 972-980.	3.2	156
57	Extracting the frequencies of the pinna spectral notches in measured head related impulse responses. Journal of the Acoustical Society of America, 2005, 118, 364-374.	1.1	79
58	Speaker localization using excitation source information in speech. IEEE Transactions on Speech and Audio Processing, 2005, 13, 751-761.	1.5	43
59	Combining evidence from source, suprasegmental and spectral features for a fixed-text speaker verification system. IEEE Transactions on Speech and Audio Processing, 2005, 13, 575-582.	1.5	97
60	Processing of reverberant speech for time-delay estimation. IEEE Transactions on Speech and Audio Processing, 2005, 13, 1110-1118.	1.5	69
61	Finding Axes of Symmetry From Potential Fields. IEEE Transactions on Image Processing, 2004, 13, 1559-1566.	9.8	44
62	Speaker-specific mapping for text-independent speaker recognition. Speech Communication, 2003, 39, 301-310.	2.8	17
63	Constraint satisfaction model for enhancement of evidence in recognition of consonant-vowel utterances., 2003,,.		1
64	Real time face authentication system using autoassociative neural network models. , 2003, , .		6
65	Prosodic manipulation using instants of significant excitation. , 2003, , .		14
66	Speech enhancement using excitation source information. , 2002, , .		42
67	Autoassociative Neural Network Models for Pattern Recognition Tasks in Speech and Image. Series in Machine Perception and Artificial Intelligence, 2002, , 283-305.	0.1	7
68	A constraint satisfaction model for recognition of stop consonant-vowel (SCV) utterances. IEEE Transactions on Speech and Audio Processing, 2002, 10, 472-480.	1.5	20
69	AANN: an alternative to GMM for pattern recognition. Neural Networks, 2002, 15, 459-469.	5.9	132
70	Radial basis function networks for fast contingency ranking. International Journal of Electrical Power and Energy Systems, 2002, 24, 387-393.	5.5	55
71	PATTERN RECOGNITION ISSUES IN SPEECH PROCESSING. , 2001, , 531-558.		0
72	Enhancement of reverberant speech using LP residual signal. IEEE Transactions on Speech and Audio Processing, 2000, 8, 267-281.	1.5	163

#	Article	IF	CITATIONS
73	Robustness of group-delay-based method for extraction of significant instants of excitation from speech signals. IEEE Transactions on Speech and Audio Processing, 1999, 7, 609-619.	1.5	60
74	Speech enhancement using linear prediction residual. Speech Communication, 1999, 28, 25-42.	2.8	145
75	Backpropagation learning algorithms for classification with fuzzy mean square error. Pattern Recognition Letters, 1998, 19, 43-51.	4.2	13
76	Supervised texture classification using a probabilistic neural network and constraint satisfaction model. IEEE Transactions on Neural Networks, 1998, 9, 516-522.	4.2	54
77	Extraction of vocal-tract system characteristics from speech signals. IEEE Transactions on Speech and Audio Processing, 1998, 6, 313-327.	1.5	110
78	Effectiveness of a periodic and aperiodic decomposition method for analysis of voice sources. IEEE Transactions on Speech and Audio Processing, 1998, 6, 12-23.	1.5	26
79	An iterative algorithm for decomposition of speech signals into periodic and aperiodic components. IEEE Transactions on Speech and Audio Processing, 1998, 6, 1-11.	1.5	80
80	Unsupervised texture classification using vector quantization and deterministic relaxation neural network. IEEE Transactions on Image Processing, 1997, 6, 1376-1387.	9.8	19
81	A clustering algorithm using an evolutionary programming-based approach. Pattern Recognition Letters, 1997, 18, 975-986.	4.2	110
82	Segmentation of Gabor-filtered textures using deterministic relaxation. IEEE Transactions on Image Processing, 1996, 5, 1625-1636.	9.8	72
83	Recognition of Stop-Consonant-Vowel (SCV) Segments in Continuous Speech using Neural Network Models. IETE Journal of Research, 1996, 42, 269-280.	2.6	25
84	Neural networks for contract bridge bidding. Sadhana - Academy Proceedings in Engineering Sciences, 1996, 21, 395-413.	1.3	9
85	On timing in time-frequency analysis of speech signals. Sadhana - Academy Proceedings in Engineering Sciences, 1996, 21, 5-20.	1.3	1
86	Word boundary hypothesization for continuous speech in Hindi based on FO patterns. Speech Communication, 1996, 18, 21-46.	2.8	11
87	Source-system windowing for speech analysis and synthesis. IEEE Transactions on Speech and Audio Processing, 1996, 4, 133-137.	1.5	3
88	Transformation of formants for voice conversion using artificial neural networks. Speech Communication, 1995, 16, 207-216.	2.8	146
89	Determination of instants of significant excitation in speech using group delay function. IEEE Transactions on Speech and Audio Processing, 1995, 3, 325-333.	1.5	157
90	Significance of knowledge sources for a text-to-speech system for Indian languages. Sadhana - Academy Proceedings in Engineering Sciences, 1994, 19, 147-169.	1,3	12

#	Article	IF	Citations
91	Artificial neural networks for pattern recognition. Sadhana - Academy Proceedings in Engineering Sciences, 1994, 19, 189-238.	1.3	59
92	Intonation component of a text-to-speech system for Hindi. Computer Speech and Language, 1993, 7, 283-301.	4.3	22
93	Image reconstruction from multiple frames of sparse data. Multidimensional Systems and Signal Processing, 1993, 4, 167-179.	2.6	1
94	Significance of group delay functions in spectrum estimation. IEEE Transactions on Signal Processing, 1992, 40, 2281-2289.	5. 3	101
95	Use of fuzzy mathematical concepts in character spotting for automatic recognition of continuous speech in Hindi. Fuzzy Sets and Systems, 1992, 46, 1-9.	2.7	8
96	Speech processing using group delay functions. Signal Processing, 1991, 22, 259-267.	3.7	88
97	Word boundary hypothesization in Hindi speech. Computer Speech and Language, 1991, 5, 379-392.	4.3	5
98	Formant extraction from group delay function. Speech Communication, 1991, 10, 209-221.	2.8	80
99	A maximum entropy approach to interpolation. Signal Processing, 1990, 21, 17-24.	3.7	5
100	Signal reconstruction from partial data for sensor array imaging applications. Signal Processing, 1990, 19, 139-149.	3.7	11
101	Voice conversion. Speech Communication, 1989, 8, 147-158.	2.8	63
102	Effectiveness of representation of signals through group delay functions. Signal Processing, 1989, 17, 141-150.	3.7	11
103	Significance of initial interpolation in band-limited signal interpolation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37, 151-152.	2.0	0
104	Applications of Group Delay Functions in Speech Processing. IETE Journal of Research, 1988, 34, 20-29.	2.6	0
105	Representation of images through group-delay functions. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35, 237-240.	2.0	4
106	Waveform estimation using group delay processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33, 832-836.	2.0	15
107	Signal-dependent matching for isolated word speech recognition systems. Signal Processing, 1984, 7, 161-173.	3.7	9
108	On improvement of performance of isolated word recognition for degraded speech. Signal Processing, 1984, 7, 175-183.	3.7	7

#	Article	IF	CITATIONS
109	Significance of group delay functions in signal reconstruction from spectral magnitude or phase. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32, 610-623.	2.0	133
110	Comparative study of nonlinear time warping techniques in isolated word speech recognition systems. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31, 1582-1586.	2.0	7
111	Design of recursive group-delay filters by autoregressive modeling. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1982, 30, 632-637.	2.0	32
112	Design of ARMA digital filters by pole-zero decomposition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29, 433-439.	2.0	24
113	Speech analysis by pole-zero decomposition of short-time spectra. Signal Processing, 1981, 3, 5-17.	3.7	20
114	Epoch extraction from linear prediction residual for identification of closed glottis interval. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27, 309-319.	2.0	219
115	Formant extraction from linearâ€prediction phase spectra. Journal of the Acoustical Society of America, 1978, 63, 1638-1640.	1.1	152
116	Epoch Extraction of Composite Signals. IETE Journal of Research, 1976, 22, 712-716.	2.6	0
117	Intelligibility of speech under nonexponential decay conditions. Journal of the Acoustical Society of America, 1975, 58, 853-857.	1.1	17
118	Epoch extraction of voiced speech. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1975, 23, 562-570.	2.0	60
119	Diffusion of decaying sound field in a reverberation room with a highly absorbing sample. Journal of the Acoustical Society of America, 1974, 56, 706-708.	1.1	1
120	Wave analysis of sound decay in rectangular rooms. Journal of the Acoustical Society of America, 1974, 56, 534-541.	1.1	5
121	Diffusion of Decaying Sound Field in a Reverberation Room with a Highly Absorbing Sample. Journal of the Acoustical Society of America, 1974, 55, 420-420.	1.1	1
122	Computation of the Capacity of a Burst Noise Binary Symmetric Channel. IETE Journal of Research, 1973, 19, 320-322.	2.6	0
123	Studies in a Reverberation Room with a Highly Absorbing Sample. Journal of the Acoustical Society of America, 1972, 52, 465-470.	1.1	6
124	An algorithm for bandlimited signal interpolation. , 0, , .		1
125	Texture classification using a probabilistic neural network and constraint satisfaction model. , 0, , .		2
126	Effect of noise and distortion in speech on parametric extraction., 0,,.		3

#	Article	IF	CITATIONS
127	Cascade realization of digital inverse filter for extracting speaker dependent features. , 0, , .		1
128	Performance of linear prediction analysis on speech with additive noise., 0,,.		1
129	Epoch extraction from linear prediction residual. , 0, , .		5
130	Nearest neighbour decision rule for vowel and digit recognition., 0,,.		0
131	A distance measure based on the derivative of linear prediction phase spectrum. , 0 , , .		10
132	Pole-zero decomposition: A new technique for design of digital filters. , 0, , .		0
133	Performance of isolated word recognition system for degraded speech. , 0, , .		0
134	Performance of isolated word recognition system for confusable vocabulary. , 0, , .		3
135	Measuring source-tract interaction from speech. , 0, , .		5
136	Voice conversion: Factors responsible for quality. , 0, , .		40
137	Processing of noisy speech using group delay functions. , 0, , .		1
138	Reconstruction from Fourier transform phase with applications to speech analysis. , 0, , .		3
139	Synthesizing Intonation for Indian Languages. , 0, , .		0
140	Texture classification using a two-stage neural network approach. , 0, , .		2
141	Neural network models for spotting stop consonant-vowel (SCV) segments in continuous speech. , 0, ,		5
142	A clustering algorithm using evolutionary programming. , 0, , .		3
143	Feedforward neural networks configuration using evolutionary programming. , 0, , .		10
144	Rough-fuzzy set theoretic approach to evaluate the importance of input features in classification. , 0, , .		5

#	Article	IF	CITATIONS
145	Incorporation of fuzzy classification properties into backpropagation learning algorithm. , 0, , .		2
146	Rough-fuzzy membership functions., 0,,.		12
147	Fuzzy-rough neural networks for vowel classification., 0, , .		10
148	Modular networks and constraint satisfaction model for recognition of stop consonant-vowel (SCV) utterances. , 0 , , .		5
149	Application of fuzzy-rough sets in modular neural networks. , 0, , .		8
150	Analysis of autoassociative mapping neural networks. , 0, , .		13
151	Speaker verification: minimizing the channel effects using autoassociative neural network models. , 0,		16
152	Neural network models for recognition of consonant-vowel (C/sup n/V) utterances. , 0, , .		1
153	Online text-independent speaker verification system using autoassociative neural network models. , 0,		9
154	Source and system features for speaker recognition using AANN models. , 0, , .		32
155	Autoassociative neural network models for online speaker verification using source features from vowels. , 0, , .		5
156	Neural network models for preprocessing and discriminating utterances of consonant-vowel units. , 0, , .		3
157	Real time face recognition system using autoassociative neural network models. , 0, , .		2
158	Prosodic manipulation using instants of significant excitation. , 0, , .		0
159	Combining evidence from multiple modular networks for recognition of consonant-vowel units of speech. , 0, , .		3
160	Constraint satisfaction model for enhancement of evidence in recognition of consonant-vowel utterances. , 0 , , .		1
161	AANN models for speaker recognition based on difference cepstrals. , 0, , .		1
162	Neural network preprocessor for recognition of syllables. , 0, , .		0

#	Article	IF	CITATIONS
163	Face verification using correlation filters and autoassocoative neural networks., 0,,.		3
164	Speaker-specific information from residual phase. , 0, , .		3
165	Acoustic model combination for recognition of speech in multiple languages using support vector machines. , 0, , .		3
166	Extraction of pitch in adverse conditions., 0,,.		30
167	Extraction of fixed dimension patterns from varying duration segments of consonant-vowel utterances. , 0, , .		12
168	Exploring features for audio clip classification using LP residual and AANN models. , 0, , .		8
169	Spotting consonant-vowel units in continuous speech using alitoassociative neural networks and support vector machines. , 0 , , .		4
170	Neural network models for combining evidence from spectral and suprasegmental features for text-dependent speaker verification. , 0 , , .		4
171	Modeling syllable duration in Indian languages using neural networks. , 0, , .		5
172	Autoassociative neural network models for language identification. , 0, , .		25
173	Speech Enhancement using Source Features and Group Delay Analysis. , 0, , .		0
174	Interpretation of State Sequences in HMM for Activity Representation. , 0, , .		7
175	NVIBRS - News video indexing, browsing and retrieval system. , 0, , .		1
176	Neural network models for extracting complementary speaker-specific information-from residual phase. , 0, , .		0
177	Language identification in noisy environments using throat microphone signals. , 0, , .		15
178	Vowel onset point based variable frame rate analysis for speech recognition. , 0, , .		1
179	Modeling syllable duration in indian languages using support vector machines. , 0, , .		7
180	Neural network classifiers for language identification using phonotactic and prosodic features. , 0, , .		7

#	Article	IF	CITATIONS
181	On Improving the Accuracy and Robustness of Time Delay Estimation of Broadband Signals. Circuits, Systems, and Signal Processing, 0, , 1.	2.0	1