

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5784032/publications.pdf Version: 2024-02-01

VINC HE

#	Article	IF	CITATIONS
1	Integrated Networking, Caching, and Computing for Connected Vehicles: A Deep Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2018, 67, 44-55.	6.3	433
2	Deep-Reinforcement-Learning-Based Optimization for Cache-Enabled Opportunistic Interference Alignment Wireless Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 10433-10445.	6.3	233
3	Big Data Analytics in Mobile Cellular Networks. IEEE Access, 2016, 4, 1985-1996.	4.2	140
4	Security and Privacy of Smart Cities: A Survey, Research Issues and Challenges. IEEE Communications Surveys and Tutorials, 2019, 21, 1718-1743.	39.4	110
5	Integration of Networking, Caching, and Computing in Wireless Systems: A Survey, Some Research Issues, and Challenges. IEEE Communications Surveys and Tutorials, 2018, 20, 7-38.	39.4	107
6	Virtualization for Distributed Ledger Technology (vDLT). IEEE Access, 2018, 6, 25019-25028.	4.2	99
7	Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep Reinforcement Learning Approach. IEEE Internet of Things Journal, 2021, 8, 2226-2237.	8.7	93
8	Secure Social Networks in 5G Systems with Mobile Edge Computing, Caching, and Device-to-Device Communications. IEEE Wireless Communications, 2018, 25, 103-109.	9.0	87
9	A Survey on Compressed Sensing in Vehicular Infotainment Systems. IEEE Communications Surveys and Tutorials, 2017, 19, 2662-2680.	39.4	71
10	Trust-Based Social Networks with Computing, Caching and Communications: A Deep Reinforcement Learning Approach. IEEE Transactions on Network Science and Engineering, 2020, 7, 66-79.	6.4	66
11	Enhancing QoE-Aware Wireless Edge Caching With Software-Defined Wireless Networks. IEEE Transactions on Wireless Communications, 2017, 16, 6912-6925.	9.2	62
12	Communication-Based Train Control System Performance Optimization Using Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology, 2017, 66, 10705-10717.	6.3	53
13	Enhancing Video Rate Adaptation With Mobile Edge Computing and Caching in Software-Defined Mobile Networks. IEEE Transactions on Wireless Communications, 2018, 17, 7013-7026.	9.2	38
14	Deep Reinforcement Learning (DRL)-based Resource Management in Software-Defined and Virtualized Vehicular Ad Hoc Networks. , 2017, , .		27
15	Bift: A Blockchain-Based Federated Learning System for Connected and Autonomous Vehicles. IEEE Internet of Things Journal, 2022, 9, 12311-12322.	8.7	27
16	Buffer-Aware Streaming in Small-Scale Wireless Networks: A Deep Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2019, 68, 6891-6902.	6.3	24
17	Resource Allocation in Software-Defined and Information-Centric Vehicular Networks with Mobile Edge Computing. , 2017, , .		23
18	A Big Data Deep Reinforcement Learning Approach to Next Generation Green Wireless Networks. , 2017,		22

Ying He

#	Article	IF	CITATIONS
19	Meta-Hierarchical Reinforcement Learning (MHRL)-Based Dynamic Resource Allocation for Dynamic Vehicular Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 3495-3506.	6.3	22
20	Efficient Resource Allocation for Multi-Beam Satellite-Terrestrial Vehicular Networks: A Multi-Agent Actor-Critic Method With Attention Mechanism. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 2727-2738.	8.0	15
21	Integrated Computing, Caching, and Communication for Trust-Based Social Networks: A Big Data DRL Approach. , 2018, , .		13
22	An Efficient Ciphertext-Policy Attribute-Based Encryption Scheme Supporting Collaborative Decryption With Blockchain. IEEE Internet of Things Journal, 2022, 9, 2722-2733.	8.7	13
23	Video Rate Adaptation and Traffic Engineering in Mobile Edge Computing and Caching-Enabled Wireless Networks. , 2017, , .		7
24	System Identification Based on Generalized Orthonormal Basis Function for Unmanned Helicopters: A Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2021, 70, 1135-1145.	6.3	4
25	Runtime Assurance of Learning-Based Lane Changing Control for Autonomous Driving Vehicles. Journal of Circuits, Systems and Computers, 2022, 31, .	1.5	4
26	Flexi-Compression: A Flexible Model Compression Method for Autonomous Driving. , 2021, , .		2
27	A Fast-adaptive Edge Resource Allocation Strategy for Dynamic Vehicular Networks. , 2021, , .		2
28	Resource Allocation in Vehicular Networks with Multi-UAV Served Edge Computing. , 2021, , .		1
29	A Blockchain-Enabled Federated Learning System with Edge Computing for Vehicular Networks. , 2021, ,		1
30	When Multi-access Edge Computing Meets Multi-area Intelligent Reflecting Surface: A Multi-agent Reinforcement Learning Approach. , 2022, , .		0
31	Multi-Constraint Deep Reinforcement Learning for Smooth Action Control. , 2022, , .		0