Jochen Fründ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5783782/publications.pdf Version: 2024-02-01

ΙΟCHEN ΕΡΑΊ/ΝΟ

#	Article	IF	CITATIONS
1	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	10.4	1,443
2	Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks. Open Ecology Journal, 2009, 2, 7-24.	2.0	1,201
3	WHAT DO INTERACTION NETWORK METRICS TELL US ABOUT SPECIALIZATION AND BIOLOGICAL TRAITS. Ecology, 2008, 89, 3387-3399.	3.2	374
4	Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 2012, 22, 1925-1931.	3.9	290
5	Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of traitâ€based concepts to plant–animal interactions. Ecography, 2015, 38, 380-392.	4.5	235
6	Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology, 2013, 94, 2042-2054.	3.2	232
7	Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 2016, 7, 13965.	12.8	180
8	The potential for indirect effects between coâ€flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters, 2014, 17, 1389-1399.	6.4	172
9	Pollinator diversity and specialization in relation to flower diversity. Oikos, 2010, 119, 1581-1590.	2.7	157
10	Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos, 2016, 125, 502-513.	2.7	157
11	Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 559-584.	8.3	152
12	Ecological correlates of vulnerability to fragmentation in Neotropical bats. Journal of Applied Ecology, 2008, 45, 381-391.	4.0	126
13	Landscape configuration of crops and hedgerows drives local syrphid fly abundance. Journal of Applied Ecology, 2014, 51, 505-513.	4.0	90
14	Response diversity of wild bees to overwintering temperatures. Oecologia, 2013, 173, 1639-1648.	2.0	75
15	Temporal scaleâ€dependence of plant–pollinator networks. Oikos, 2020, 129, 1289-1302.	2.7	66
16	Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecology Letters, 2021, 24, 149-161.	6.4	66
17	Linné's floral clock is slow without pollinators – flower closure and plantâ€pollinator interaction webs. Ecology Letters, 2011, 14, 896-904.	6.4	53
18	Transferring biodiversity-ecosystem function research to the management of â€~real-world' ecosystems. Advances in Ecological Research, 2019, 61, 323-356.	2.7	51

Jochen Fründ

#	Article	IF	CITATIONS
19	Defaunation effects on plant recruitment depend on size matching and size trade-offs in seed-dispersal networks. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162664.	2.6	46
20	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	2.6	43
21	Experimental environmental change and mutualistic vs. antagonistic plant flower–visitor interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 27-35.	2.7	38
22	The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage. PLoS ONE, 2016, 11, e0157674.	2.5	29
23	Dissimilarity of species interaction networks: how to partition rewiring and species turnover components. Ecosphere, 2021, 12, e03653.	2.2	27
24	Tree diversity reduces the risk of bark beetle infestation for preferred conifer species, but increases the risk for less preferred hosts. Journal of Ecology, 2021, 109, 2649-2661.	4.0	20
25	The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird–plant frugivory networks. Ecology Letters, 2020, 23, 1252-1262.	6.4	19
26	Invasive Plants as Novel Food Resources, the Pollinatorsâ \in M Perspective. , 2016, , 119-132.		9
27	Within-day dynamics of plant–pollinator networks are dominated by early flower closure: an experimental test of network plasticity. Oecologia, 2021, 196, 781-794.	2.0	9
28	Quantitative Prediction of Interactions in Bipartite Networks Based on Traits, Abundances, and Phylogeny. American Naturalist, 2022, 199, 841-854.	2.1	8
29	Effects of rare arable plants on flower-visiting wild bees in agricultural fields. Agriculture, Ecosystems and Environment, 2022, 323, 107685.	5.3	7
30	Influence of plant fertilisation on cereal aphid-primary parasitoid-secondary parasitoid networks in simple and complex landscapes. Agriculture, Ecosystems and Environment, 2019, 281, 47-55.	5.3	6

Parasitoid community responds indiscriminately to fluctuating spruce budworm (Lepidoptera:) Tj ETQq1 1 0.784314 ggBT /Oyerlock 1