
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5783619/publications.pdf Version: 2024-02-01

ASSAF VADDI

#	Article	IF	CITATIONS
1	The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science, 2004, 306, 79-86.	6.0	1,862
2	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	13.7	1,458
3	Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Current Biology, 1999, 9, 1061-1064.	1.8	270
4	A Stress Surveillance System Based on Calcium and Nitric Oxide in Marine Diatoms. PLoS Biology, 2006, 4, e60.	2.6	248
5	Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton. Science, 2009, 326, 861-865.	6.0	229
6	Identification of the algal dimethyl sulfide–releasing enzyme: A missing link in the marine sulfur cycle. Science, 2015, 348, 1466-1469.	6.0	199
7	Oceanographic and Biogeochemical Insights from Diatom Genomes. Annual Review of Marine Science, 2010, 2, 333-365.	5.1	189
8	Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19327-19332.	3.3	189
9	Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environmental Microbiology, 2007, 9, 965-970.	1.8	187
10	Vortical ciliary flows actively enhance mass transport in reef corals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13391-13396.	3.3	173
11	Inhibition of growth and photosynthesis of the dinoflagellate <i>Peridinium gatunense</i> by <i>Microcystis</i> sp. (cyanobacteria): A novel allelopathic mechanism. Limnology and Oceanography, 2002, 47, 1656-1663.	1.6	169
12	Dinoflagellate-Cyanobacterium Communication May Determine the Composition of Phytoplankton Assemblage in a Mesotrophic Lake. Current Biology, 2002, 12, 1767-1772.	1.8	162
13	Virocell Metabolism: Metabolic Innovations During Host–Virus Interactions in the Ocean. Trends in Microbiology, 2016, 24, 821-832.	3.5	160
14	Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2740-2745.	3.3	147
15	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	1.8	134
16	Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of <i>Emiliania huxleyi</i> , a Bloom-Forming Alga in the Ocean Â. Plant Cell, 2014, 26, 2689-2707.	3.1	132
17	A Diatom Gene Regulating Nitric-Oxide Signaling and Susceptibility to Diatom-Derived Aldehydes. Current Biology, 2008, 18, 895-899.	1.8	126
18	An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Current Opinion in Plant Biology, 2006, 9, 264-273.	3.5	114

#	Article	IF	CITATIONS
19	Coccolithovirus facilitation of carbon export in the North Atlantic. Nature Microbiology, 2018, 3, 537-547.	5.9	114
20	Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics, 2009, 10, 624.	1.2	112
21	Decoupling Physical from Biological Processes to Assess the Impact of Viruses on a Mesoscale Algal Bloom. Current Biology, 2014, 24, 2041-2046.	1.8	110
22	Viral infection of the marine alga <i>Emiliania huxleyi</i> triggers lipidomeÂremodeling and induces the production of highly saturated triacylglycerol. New Phytologist, 2016, 210, 88-96.	3.5	98
23	Digital expression profiling of novel diatom transcripts provides insight into their biological functions. Genome Biology, 2010, 11, R85.	13.9	97
24	IDENTIFICATION AND COMPARATIVE GENOMIC ANALYSIS OF SIGNALING AND REGULATORY COMPONENTS IN THE DIATOMTHALASSIOSIRA PSEUDONANA. Journal of Phycology, 2007, 43, 585-604.	1.0	87
25	A chemical arms race at sea mediates algal host–virus interactions. Current Opinion in Microbiology, 2011, 14, 449-457.	2.3	84
26	Infection of phytoplankton by aerosolized marine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6643-6647.	3.3	79
27	Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy, 2015, 11, 701-715.	4.3	79
28	A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nature Communications, 2016, 7, 10860.	5.8	79
29	Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME Journal, 2016, 10, 1742-1754.	4.4	79
30	Phosphorus starvation induces membrane remodeling and recycling in <i>Emiliania huxleyi</i> . New Phytologist, 2016, 211, 886-898.	3.5	78
31	Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Science Advances, 2018, 4, eaau5716.	4.7	78
32	Hijacking of an autophagyâ€like process is critical for the life cycle of a <scp>DNA</scp> virus infecting oceanic algal blooms. New Phytologist, 2014, 204, 854-863.	3.5	71
33	Microbial metabolites in the marine carbon cycle. Nature Microbiology, 2022, 7, 508-523.	5.9	71
34	Novel molecular determinants of viral susceptibility and resistance in the lipidome of <scp><i>E</i></scp> <i>miliania huxleyi</i> . Environmental Microbiology, 2014, 16, 1137-1149.	1.8	68
35	Synchronization of cell death in a dinoflagellate population is mediated by an excreted thiol protease. Environmental Microbiology, 2007, 9, 360-369.	1.8	64
36	Apoptosis-Inducing Galactolipids from a Cultured Marine Diatom, <i>Phaeodactylum tricornutum</i> . Journal of Natural Products, 2008, 71, 1197-1201.	1.5	60

#	Article	IF	CITATIONS
37	Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME Journal, 2015, 9, 385-395.	4.4	59
38	Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1907-16.	3.3	58
39	Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nature Microbiology, 2017, 2, 1485-1492.	5.9	56
40	A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Science Advances, 2020, 6, eaba4137.	4.7	55
41	Extracellular vesicles — new players in cell–cell communication in aquatic environments. Current Opinion in Microbiology, 2018, 43, 148-154.	2.3	54
42	Effects of phytoplankton physiology on export flux. Marine Ecology - Progress Series, 2008, 354, 3-19.	0.9	54
43	Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export. ISME Journal, 2018, 12, 704-713.	4.4	53
44	In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nature Microbiology, 2019, 4, 527-538.	5.9	52
45	DddD Is a CoA-Transferase/Lyase Producing Dimethyl Sulfide in the Marine Environment. Biochemistry, 2014, 53, 5473-5475.	1.2	51
46	Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
47	Zooplankton May Serve as Transmission Vectors for Viruses Infecting Algal Blooms in the Ocean. Current Biology, 2014, 24, 2592-2597.	1.8	48
48	Expanding Tara Oceans Protocols for Underway, Ecosystemic Sampling of the Ocean-Atmosphere Interface During Tara Pacific Expedition (2016–2018). Frontiers in Marine Science, 2019, 6, .	1.2	42
49	Cell signaling in marine diatoms. Communicative and Integrative Biology, 2008, 1, 134-136.	0.6	40
50	Targeted and untargeted lipidomics of Emiliania huxleyi viral infection and life cycle phases highlights molecular biomarkers of infection, susceptibility, and ploidy. Frontiers in Marine Science, 2015, 2, .	1.2	37
51	Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean. Nature Microbiology, 2021, 6, 1357-1366.	5.9	33
52	Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. Science Advances, 2021, 7, .	4.7	32
53	Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi. BMC Genomics, 2014, 15, 148.	1.2	31
54	<i>N</i> -Acyl Homoserine Lactone Derived Tetramic Acids Impair Photosynthesis in <i>Phaeodactylum tricornutum</i> . ACS Chemical Biology, 2019, 14, 198-203.	1.6	29

#	Article	IF	CITATIONS
55	Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi. PLoS Pathogens, 2017, 13, e1006775.	2.1	29
56	Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters. Nature Communications, 2017, 8, 14868.	5.8	28
57	<i>Vibrio coralliilyticus</i> infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. ISME Journal, 2019, 13, 989-1003.	4.4	27
58	Chronic iron limitation confers transient resistance to oxidative stress in marine diatoms. Plant Physiology, 2016, 172, pp.00840.2016.	2.3	26
59	Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis. Nature Plants, 2017, 3, 17066.	4.7	26
60	Diatom genomes come of age. Genome Biology, 2008, 9, 245.	13.9	25
61	Biotic interactions as drivers of algal origin and evolution. New Phytologist, 2017, 216, 670-681.	3.5	25
62	Using NanoSIMS coupled with microfluidics to visualize the early stages of coral infection by Vibrio corallilyticus. BMC Microbiology, 2018, 18, 39.	1.3	20
63	Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom. ELife, 2019, 8, .	2.8	20
64	Unmasking cellular response of a bloom-forming alga to viral infection by resolving expression profiles at a single-cell level. PLoS Pathogens, 2019, 15, e1007708.	2.1	19
65	Ambiguous evidence for assigning DddQ as a dimethylsulfoniopropionate lyase and oceanic dimethylsulfide producer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2078-9.	3.3	17
66	Ecological significance of extracellular vesicles in modulating host-virus interactions during algal blooms. ISME Journal, 2021, 15, 3714-3721.	4.4	17
67	Diurnal fluctuations in chloroplast <scp>GSH</scp> redox state regulate susceptibility to oxidative stress and cell fate in a bloomâ€forming diatom. Journal of Phycology, 2018, 54, 329-341.	1.0	16
68	Assigning the Algal Source of Dimethylsulfide Using a Selective Lyase Inhibitor. ACS Chemical Biology, 2017, 12, 41-46.	1.6	15
69	Infection Dynamics of a Bloom-Forming Alga and Its Virus Determine Airborne Coccolith Emission from Seawater. IScience, 2018, 6, 327-335.	1.9	14
70	Decoupling atmospheric and oceanic factors affecting aerosol loading over a cluster of mesoscale North Atlantic eddies. Geophysical Research Letters, 2014, 41, 4075-4081.	1.5	13
71	Biochemical Characterization of a Novel Redox-Regulated Metacaspase in a Marine Diatom. Frontiers in Microbiology, 2021, 12, 688199.	1.5	13
72	Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans. Communications Earth & Environment, 2022, 3, .	2.6	13

#	Article	IF	CITATIONS
73	Nitric oxide mediates oxylipin production and grazing defense in diatoms. Environmental Microbiology, 2020, 22, 629-645.	1.8	12
74	Microscale tracking of coral-vibrio interactions. ISME Communications, 2021, 1, .	1.7	12
75	Bistability in oxidative stress response determines the migration behavior of phytoplankton in turbulence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
76	Tara Pacific Expedition's Atmospheric Measurements of Marine Aerosols across the Atlantic and Pacific Oceans: Overview and Preliminary Results. Bulletin of the American Meteorological Society, 2020, 101, E536-E554.	1.7	9
77	Algal viruses hitchhiking on zooplankton across phytoplankton blooms. Communicative and Integrative Biology, 2015, 8, e1029210.	0.6	7
78	An Emiliania huxleyi pan-transcriptome reveals basal strain specificity in gene expression patterns. Scientific Reports, 2021, 11, 20795.	1.6	7
79	Complete Genome Sequence of <i>Emiliania huxleyi</i> Virus Strain M1, Isolated from an Induced <i>E. huxleyi</i> Bloom in Bergen, Norway. Microbiology Resource Announcements, 2022, 11, e0007122.	0.3	6
80	Complete Genome Sequence of <i>Sulfitobacter</i> sp. Strain D7, a Virulent Bacterium Isolated from an <i>Emiliania huxleyi</i> Algal Bloom in the North Atlantic. Microbiology Resource Announcements, 2018, 7, .	0.3	5
81	Magnesium-Rich Nanometric Layer in the Skeleton of Pocillopora damicornis With Possible Involvement in Fibrous Aragonite Deposition. Frontiers in Marine Science, 2018, 5, .	1.2	5
82	Diel cycle of sea spray aerosol concentration. Nature Communications, 2021, 12, 5476.	5.8	5
83	An Ocean of Signals: Intracellular and Extracellular Signaling in Diatoms. , 2022, , 641-678.		3
84	Pharmacokinetics of Endobronchial Tolazoline Administration in Dogs. American Journal of Perinatology, 1999, 16, 1-6.	0.6	2
85	Correction: Diatom genomes come of age. Genome Biology, 2010, 11, 401.	13.9	0
86	Infection Dynamics of a Bloom-Forming Alga and Its Virus Determine Airborne Coccolith Emission from Seawater. SSRN Electronic Journal, 0, , .	0.4	0