Mercedes Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5782268/publications.pdf

Version: 2024-02-01

76 papers 2,052 citations

236925 25 h-index 265206 42 g-index

82 all docs

82 docs citations

times ranked

82

1935 citing authors

#	Article	IF	Citations
1	Uncovering the Activity of Alkaline Earth Metal Hydrogenation Catalysis Through Molecular Volcano Plots. Topics in Catalysis, 2022, 65, 289-295.	2.8	3
2	SuFEx-enabled, chemoselective synthesis of triflates, triflamides and triflimidates. Chemical Science, 2022, 13, 2270-2279.	7.4	7
3	Mechanochemically Triggered Topology Changes in Expanded Porphyrins. Chemistry - A European Journal, 2021, 27, 3397-3406.	3.3	14
4	Single-molecule conductance in a unique cross-conjugated tetra(aminoaryl)ethene. Chemical Communications, 2021, 57, 591-594.	4.1	9
5	Towards the understanding of halogenation in peptide hydrogels: a quantum chemical approach. Materials Advances, 2021, 2, 4792-4803.	5 . 4	3
6	Quantifying aromaticity according to the energetic criterion., 2021,, 195-235.		1
7	Reactivity of Single Transition Metal Atoms on a Hydroxylated Amorphous Silica Surface: A Periodic Conceptual DFT Investigation. Chemistry - A European Journal, 2021, 27, 6050-6063.	3. 3	11
8	Designing Force Probes Based on Reversible 6Ï€-Electrocyclizations in Polyenes Using Quantum Chemical Calculations. Journal of Organic Chemistry, 2021, 86, 7477-7489.	3.2	5
9	Computational Tools to Rationalize and Predict the Self-Assembly Behavior of Supramolecular Gels. Gels, 2021, 7, 87.	4.5	13
10	Fine-Tuning of Nonlinear Optical Contrasts of Hexaphyrin-Based Molecular Switches Using Inverse Design. Frontiers in Chemistry, 2021, 9, 786036.	3.6	5
11	Rationalising Supramolecular Hydrogelation of Bisâ€Ureaâ€Based Gelators through a Multiscale Approach. ChemPlusChem, 2020, 85, 267-276.	2.8	9
12	The hunt for reactive alkynes in bio-orthogonal click reactions: insights from mechanochemical and conceptual DFT calculations. Chemical Science, 2020, 11, 1431-1439.	7.4	21
13	Rationalising Supramolecular Hydrogelation of Bisâ€Ureaâ€Based Gelators through a Multiscale Approach. ChemPlusChem, 2020, 85, 266-266.	2.8	1
14	Synthesis and Reactivity of Spirocarbocycles as Scaffolds for Nucleoside Analogues. Journal of Organic Chemistry, 2020, 85, 14989-15005.	3.2	1
15	Molecular dynamics based descriptors for predicting supramolecular gelation. Chemical Science, 2020, 11, 4226-4238.	7.4	29
16	Switching between Hýckel and Möbius aromaticity: a density functional theory and information-theoretic approach study. Physical Chemistry Chemical Physics, 2020, 22, 4715-4730.	2.8	25
17	Performance of Electronic Structure Methods for the Description of HÃ⅓ckel–Möbius Interconversions in Extended π-Systems. Journal of Physical Chemistry A, 2020, 124, 2380-2397.	2.5	22
18	Ambident Nucleophilic Substitution: Understanding Nonâ€HSAB Behavior through Activation Strain and Conceptual DFT Analyses. Chemistry - A European Journal, 2020, 26, 3884-3893.	3.3	23

#	Article	IF	Citations
19	Performance of Localized Coupled Cluster Methods in a Moderately Strong Correlation Regime: Hückel–Möbius Interconversions in Expanded Porphyrins. Journal of Chemical Theory and Computation, 2020, 16, 3641-3653.	5.3	44
20	Stereoselective Reductions of 3-Substituted Cyclobutanones: A Comparison between Experiment and Theory. Journal of Organic Chemistry, 2020, 85, 7803-7816.	3.2	5
21	Global and local aromaticity of acenes from the information-theoretic approach in density functional reactivity theory. Physical Chemistry Chemical Physics, 2019, 21, 18195-18210.	2.8	41
22	A Benchmark of Density Functional Approximations For Thermochemistry and Kinetics of Hydride Reductions of Cyclohexanones. ChemistryOpen, 2019, 8, 788-806.	1.9	7
23	Alkene Transfer Hydrogenation with Alkalineâ€Earth Metal Catalysts. Angewandte Chemie - International Edition, 2019, 58, 4248-4253.	13.8	65
24	Alkene Transfer Hydrogenation with Alkalineâ€Earth Metal Catalysts. Angewandte Chemie, 2019, 131, 4292-4297.	2.0	24
25	Implementing the mechanical force into the conceptual DFT framework: understanding and predicting molecular mechanochemical properties. Physical Chemistry Chemical Physics, 2019, 21, 7378-7388.	2.8	25
26	Fingerprint of Aromaticity and Molecular Topology on the Photophysical Properties of Octaphyrins. Journal of Physical Chemistry C, 2019, 123, 7318-7335.	3.1	32
27	Towards the Design of Optically Active Thiophene Sâ€Oxides using Quantum Chemistry. Chemistry - A European Journal, 2019, 25, 2840-2851.	3.3	2
28	Conductance Switching in Expanded Porphyrins through Aromaticity and Topology Changes. Journal of the American Chemical Society, 2018, 140, 1313-1326.	13.7	56
29	New electron delocalization tools to describe the aromaticity in porphyrinoids. Physical Chemistry Chemical Physics, 2018, 20, 2787-2796.	2.8	86
30	Imine hydrogenation with simple alkaline earth metal catalysts. Nature Catalysis, 2018, 1, 40-47.	34.4	151
31	Qualitative Insights into the Transport Properties of Hýckel/Möbius (Anti)Aromatic Compounds: Application to Expanded Porphyrins. Journal of Physical Chemistry C, 2018, 122, 19842-19856.	3.1	17
32	Toward the Design of Bithermoelectric Switches. Journal of Physical Chemistry C, 2018, 122, 24436-24444.	3.1	10
33	Simple Alkalineâ€Earth Metal Catalysts for Effective Alkene Hydrogenation. Angewandte Chemie, 2018, 130, 15397-15402.	2.0	33
34	Simple Alkalineâ€Earth Metal Catalysts for Effective Alkene Hydrogenation. Angewandte Chemie - International Edition, 2018, 57, 15177-15182.	13.8	87
35	Aromaticity as a Guiding Concept for Spectroscopic Features and Nonlinear Optical Properties of Porphyrinoids. Molecules, 2018, 23, 1333.	3.8	38
36	A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites. Journal of Molecular Modeling, 2017, 23, 43.	1.8	22

#	Article	IF	CITATIONS
37	A comparative study of the structure and bonding in heavier pnictinidene complexes $[(ArE)M(CO) < sub > n < /sub >]$ (E = As, Sb and Bi; M = Cr, Mo, W and Fe). Dalton Transactions, 2017, 46, 3556-3568.	3.3	44
38	Different Products of the Reduction of (N),C,Nâ€Chelated Antimony(III) Compounds: Competitive Formation of Monomeric Stibinidenes versus 1 <i>H</i> àê€2,1â€Benzazastiboles. Chemistry - A European Journal, 2017, 23, 2340-2349.	3.3	39
39	Spontaneous Double Hydrometallation Induced by Nâ†'M Coordination in Organometallic Hydrides of Group 14 Elements. Chemistry - A European Journal, 2016, 22, 5620-5628.	3.3	16
40	Synthesis and reactivity of a germylene stabilized by a boraguanidinate ligand. RSC Advances, 2016, 6, 19377-19388.	3.6	18
41	A benchmark for the non-covalent interaction (NCI) index or $\hat{a} \in \ \ $ is it really all in the geometry?. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	124
42	Revisiting sulfur H-bonds in proteins: The example of peroxiredoxin AhpE. Scientific Reports, 2016, 6, 30369.	3.3	52
43	The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE. Chemical Communications, 2016, 52, 10293-10296.	4.1	16
44	Stibinidene and Bismuthinidene as Twoâ€Electron Donors for Transition Metals (Co and Mn). Chemistry - A European Journal, 2016, 22, 7376-7380.	3.3	51
45	Understanding conductivity in molecular switches: a real space approach in octaphyrins. Physical Chemistry Chemical Physics, 2016, 18, 11829-11838.	2.8	10
46	Understanding the molecular switching properties of octaphyrins. Physical Chemistry Chemical Physics, 2016, 18, 11885-11900.	2.8	29
47	Metalated Hexaphyrins: From Understanding to Rational Design. Chemistry - A European Journal, 2015, 21, 17631-17638.	3.3	14
48	From Dibismuthenes to Three―and Twoâ€Coordinated Bismuthinidenes by Fine Ligand Tuning: Evidence for Aromatic BiC ₃ N Rings through a Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2015, 21, 16917-16928.	3.3	76
49	Oxidative Additions of Homoleptic Tin(II) Amidinate. Organometallics, 2015, 34, 606-615.	2.3	13
50	Reactivity of bis(organoamino)phosphanes with magnesium(<scp>ii</scp>) compounds. Dalton Transactions, 2015, 44, 4533-4545.	3.3	5
51	Reactivity of Tin(II) Guanidinate with 1,2- and 1,3-Diones: Oxidative Cycloaddition or Ligand Substitution ?. Organometallics, 2015, 34, 2202-2211.	2.3	8
52	Scrutinizing ion- $i\in$ and ion- if interactions using the noncovalent index and energy decomposition analysis. Computational and Theoretical Chemistry, 2015, 1053, 150-164.	2.5	9
53	Comparison of reactivity of <i>C</i> , <i>N</i> -chelated and Lappert's stannylenes with trimethylsilylazide. Canadian Journal of Chemistry, 2014, 92, 434-440.	1.1	12
54	Understanding the Fundamental Role of π <i>/</i> s f <i>/</i> f, and f <i>/</i> i € Dispersion Interactions in Shaping Carbonâ€Based Materials. Chemistry - A European Journal, 2014, 20, 4931-4941.	3.3	109

#	Article	IF	CITATIONS
55	Understanding the Fundamental Role of $\tilde{ }\in\tilde{ }\in\tilde{ }f f$, and $\tilde{ }f \tilde{ }\in$ Dispersion Interactions in Shaping Carbon-Based Materials. Chemistry - A European Journal, 2014, 20, 4845-4845.	3.3	3
56	Exploring the structure–aromaticity relationship in Hýckel and Möbius N-fused pentaphyrins using DFT. Physical Chemistry Chemical Physics, 2014, 16, 14396-14407.	2.8	41
57	Reactivity of Bis(organoamino)phosphanes with Aluminum(III) Compounds: Straightforward Access to Diiminophosphinates by Means of Hydrogen-Atom Migration - An Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2014, 2014, 5193-5203.	2.0	8
58	Hydrosilylation Induced by N→Si Intramolecular Coordination: Spontaneous Transformation of Organosilanes into 1â€Azaâ€Siloleâ€Type Molecules in the Absence of a Catalyst. Chemistry - A European Journal, 2014, 20, 2542-2550.	3. 3	23
59	Topology Switching in [32]Heptaphyrins Controlled by Solvent, Protonation, and <i>meso</i> i>â€Substituents. Chemistry - A European Journal, 2013, 19, 1617-1628.	3.3	49
60	Synthesis and Structural Characterization of Heteroboroxines with MB ₂ O ₃ Core (M = Sb, Bi, Sn). Inorganic Chemistry, 2013, 52, 1424-1431.	4.0	22
61	Conformational Control in [22]- and [24]Pentaphyrins(1.1.1.1.1) by Meso Substituents and their N-Fusion Reaction. Journal of Organic Chemistry, 2013, 78, 4419-4431.	3.2	25
62	Viability of Möbius Topologies in [26]―and [28]Hexaphyrins. Chemistry - A European Journal, 2012, 18, 10916-10928.	3.3	48
63	Chemical applications of neural networks: aromaticity of pyrimidine derivatives. Physical Chemistry Chemical Physics, 2011, 13, 20564.	2.8	23
64	Biological and chemical studies on aryl hydrocarbon receptor induction by the p53 inhibitor pifithrin- \hat{l}^{\pm} and its condensation product pifithrin- \hat{l}^{2} . Life Sciences, 2011, 88, 774-783.	4.3	14
65	A universal scale of aromaticity for Ï€â€organic compounds. Journal of Computational Chemistry, 2010, 31, 917-928.	3 . 3	38
66	Aryl hydrocarbon receptor induction by alpha- and ss-pifithrin. Toxicology Letters, 2010, 196, S258.	0.8	0
67	X-ray Diffraction, Solution Structure, and Computational Studies on Derivatives of (3- <i>sec</i> -Butyl-2,3-dihydro-1 <i>H</i> -isoquinolin-4-ylidene)acetic Acid: Compounds with Activity as Calpain Inhibitors. Journal of Organic Chemistry, 2010, 75, 342-352.	3.2	5
68	Substituent effects on the aromaticity of carbocyclic five-membered rings. Physical Chemistry Chemical Physics, 2010, 12, 1305-1317.	2.8	29
69	Studies on calpain inhibitors. Synthesis of partially reduced isoquinoline-1-thione derivatives and conversion to functionalized 1-chloroisoquinolines. Tetrahedron Letters, 2008, 49, 2275-2279.	1.4	10
70	Decabromobiphenyl (PBB-209) Activates the Aryl Hydrocarbon Receptor While Decachlorobiphenyl (PCB-209) Is Inactive: Experimental Evidence and Computational Rationalization of the Different Behavior of Some Halogenated Biphenyls. Chemical Research in Toxicology, 2008, 21, 643-658.	3.3	19
71	Neural Networks as a Tool To Classify Compounds According to Aromaticity Criteria. Chemistry - A European Journal, 2007, 13, 3913-3923.	3.3	29
72	Aromaticity changes along the reaction coordinate connecting the cyclobutadiene dimer to cubane and the benzene dimer to hexaprismane. Structural Chemistry, 2007, 18, 773-783.	2.0	18

#	Article	IF	CITATION
73	ACTIVATION OF THE ARYL HYDROCARBON RECEPTOR BY CARBARYL: COMPUTATIONAL EVIDENCE OF THE ABILITY OF CARBARYL TO ASSUME A PLANAR CONFORMATION. Environmental Toxicology and Chemistry, 2006, 25, 3141.	4.3	16
74	Derivatives of 3-sec-Butyl-1-oxo-2,3-dihydroisoquinoline as Inhibitors of \hat{l} 4-Calpain. ChemMedChem, 2006, 1, 710-714.	3.2	7
75	Studies on aromatic compounds: inhibition of calpain I by biphenyl derivatives and peptide-biphenyl hybrids. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2753-2757.	2.2	21
76	8-Aryl substituted boron-dipyrromethene dyes: crystal structures and computational studies. Journal of Molecular Structure, 2004, 697, 29-40.	3.6	11