
Steven Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5781284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oscillations in NF-ÂB Signaling Control the Dynamics of Gene Expression. Science, 2004, 306, 704-708.	12.6	1,109
2	Neutrophil function in inflammation and inflammatory diseases. Rheumatology, 2010, 49, 1618-1631.	1.9	627
3	Mclâ€1; the molecular regulation of protein function. FEBS Letters, 2010, 584, 2981-2989.	2.8	460
4	Molecular control of neutrophil apoptosis. FEBS Letters, 2001, 487, 318-322.	2.8	417
5	The multifactorial role of neutrophils in rheumatoid arthritis. Nature Reviews Rheumatology, 2014, 10, 593-601.	8.0	414
6	Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Trends in Immunology, 1997, 18, 320-324.	7.5	334
7	Mcl-1 Expression in Human Neutrophils: Regulation by Cytokines and Correlation With Cell Survival. Blood, 1998, 92, 2495-2502.	1.4	334
8	The Mitochondrial Network of Human Neutrophils: Role in Chemotaxis, Phagocytosis, Respiratory Burst Activation, and Commitment to Apoptosis. Journal of Immunology, 2003, 170, 1964-1972.	0.8	304
9	Granulocyte Macrophage Colony-stimulating Factor Signaling and Proteasome Inhibition Delay Neutrophil Apoptosis by Increasing the Stability of Mcl-1. Journal of Biological Chemistry, 2004, 279, 26915-26921.	3.4	213
10	Human neutrophils in auto-immunity. Seminars in Immunology, 2016, 28, 159-173.	5.6	150
11	Effects of IL-6 and IL-6 blockade on neutrophil function in vitro and in vivo. Rheumatology, 2014, 53, 1321-1331.	1.9	147
12	BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis. Journal of Leukocyte Biology, 2001, 70, 783-92.	3.3	143
13	Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells. Blood, 2000, 96, 1756-1763.	1.4	124
14	Low-density granulocytes: functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. Journal of Leukocyte Biology, 2017, 101, 599-611.	3.3	121
15	Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood, 1998, 92, 2495-502.	1.4	119
16	Interferon gene expression signature in rheumatoid arthritis neutrophils correlates with a good response to TNFi therapy. Rheumatology, 2015, 54, 188-193.	1.9	108
17	Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy. Rheumatology, 2012, 51, 451-459.	1.9	102
18	Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis. Arthritis and Rheumatism, 2003, 48, 2796-2806.	6.7	99

#	Article	IF	CITATIONS
19	Differential role of neutrophil Fc? receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. Arthritis and Rheumatism, 2002, 46, 1351-1361.	6.7	97
20	Functional analysis of the human MCL-1 gene. Cellular and Molecular Life Sciences, 2000, 57, 684-691.	5.4	96
21	Immunological detection of myeloperoxidase in synovial fluid from patients with rheumatoid arthritis. Biochemical Journal, 1988, 250, 81-85.	3.7	94
22	Regulation of neutrophil apoptosis by Mcl-1. Biochemical Society Transactions, 2004, 32, 489-492.	3.4	92
23	RNA-Seq Reveals Activation of Both Common and Cytokine-Specific Pathways following Neutrophil Priming. PLoS ONE, 2013, 8, e58598.	2.5	92
24	Insoluble and soluble immune complexes activate neutrophils by distinct activation mechanisms: changes in functional responses induced by priming with cytokines. Annals of the Rheumatic Diseases, 2002, 61, 13-19.	0.9	91
25	Changes in expression of membrane TNF, NF-κB activation and neutrophil apoptosis during active and resolved inflammation. Annals of the Rheumatic Diseases, 2011, 70, 537-543.	0.9	89
26	The dual effects of TNFα on neutrophil apoptosis are mediated via differential effects on expression of Mcl-1 and Bfl-1. Blood, 2008, 111, 878-884.	1.4	87
27	Neutrophil apoptosis in rheumatoid arthritis is regulated by local oxygen tensions within joints. Journal of Leukocyte Biology, 2006, 80, 521-528.	3.3	85
28	Neutrophils isolated from the synovial fluid of patients with rheumatoid arthritis: priming and activation in vivo Annals of the Rheumatic Diseases, 1991, 50, 147-153.	0.9	83
29	Neutrophil function in whole blood and after purification: Changes in receptor expression, oxidase activity and responsiveness to cytokines. Bioscience Reports, 1992, 12, 123-133.	2.4	82
30	In vivo localisation and stability of human Mclâ€1 using green fluorescent protein (GFP) fusion proteins. FEBS Letters, 2000, 478, 72-76.	2.8	79
31	The role of neutrophil apoptosis in juvenileâ€onset systemic lupus erythematosus. Arthritis and Rheumatism, 2009, 60, 2390-2401.	6.7	77
32	Microbial Mannan Inhibits Bacterial Killing by Macrophages: A Possible Pathogenic Mechanism for Crohn's Disease. Gastroenterology, 2007, 133, 1487-1498.	1.3	75
33	Rheumatoid Arthritis Synovial Fluid Neutrophils Drive Inflammation Through Production of Chemokines, Reactive Oxygen Species, and Neutrophil Extracellular Traps. Frontiers in Immunology, 2020, 11, 584116.	4.8	75
34	Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism. Cancer Research, 2002, 62, 6500-5.	0.9	72
35	Neutrophils from the synovial fluid of patients with rheumatoid arthritis express the high affinity immunoglobulin G receptor, Fc 1³ RI (CD64): role of immune complexes and cytokines in induction of receptor expression. Immunology, 1997, 91, 266-273.	4.4	70
36	Activation of neutrophil reactive-oxidant production by synovial fluid from patients with inflammatory joint disease. Soluble and insoluble immunoglobulin aggregates activate different pathways in primed and unprimed cells. Biochemical Journal, 1992, 286, 345-351.	3.7	69

#	Article	IF	CITATIONS
37	Oxygen-radical production during inflammation may be limited by oxygen concentration. Biochemical Journal, 1984, 217, 851-854.	3.7	66
38	Oxidative inactivation of myeloperoxidase released from human neutrophils. Biochemical Journal, 1987, 245, 925-928.	3.7	66
39	Cell signalling by integrins and immunoglobulin receptors in primed neutrophils. Trends in Biochemical Sciences, 1995, 20, 362-367.	7.5	66
40	Secretion of oncostatin M by neutrophils in rheumatoid arthritis. Arthritis and Rheumatism, 2004, 50, 1430-1436.	6.7	65
41	Mucocutaneous manifestations in juvenile-onset systemic lupus erythematosus: a review of literature. Pediatric Rheumatology, 2015, 13, 1.	2.1	61
42	The Oâ^'2Generating NADPH Oxidase of Phagocytes: Structure and Methods of Detection. Methods, 1996, 9, 563-577.	3.8	54
43	Sodium Salicylate Promotes Neutrophil Apoptosis by Stimulating Caspase-Dependent Turnover of Mcl-1. Journal of Immunology, 2006, 176, 957-965.	0.8	54
44	Neutrophil biomarkers predict response to therapy with tumor necrosis factor inhibitors in rheumatoid arthritis. Journal of Leukocyte Biology, 2017, 101, 785-795.	3.3	54
45	Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells. Blood, 2000, 96, 1756-63.	1.4	50
46	Human neutrophils activated via TLR8 promote Th17 polarization through IL-23. Journal of Leukocyte Biology, 2019, 105, 1155-1165.	3.3	44
47	In vitro effects of GM-CSF on mature peripheral blood neutrophils International Journal of Molecular Medicine, 1998, 1, 943-51.	4.0	43
48	FcÎ ³ receptors in autoimmune diseases. European Journal of Clinical Investigation, 2001, 31, 821-831.	3.4	43
49	Receptor expression in synovial fluid neutrophils from patients with rheumatoid arthritis Annals of the Rheumatic Diseases, 1993, 52, 354-359.	0.9	42
50	Regulation of neutrophil Fcl̂ ³ RIIIb (CD16) surface expression following delayed apoptosis in response to GM-CSF and sodium butyrate. Journal of Leukocyte Biology, 1999, 65, 875-882.	3.3	42
51	Haemophilus influenzaeInduces Neutrophil Necrosis. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 135-143.	2.9	42
52	Whose Gene Is It Anyway? The Effect of Preparation Purity on Neutrophil Transcriptome Studies. PLoS ONE, 2015, 10, e0138982.	2.5	42
53	Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis. Scientific Reports, 2016, 6, 35559.	3.3	40
54	Neutrophil gene expression in rheumatoid arthritis. Pathophysiology, 2005, 12, 191-202.	2.2	38

#	Article	IF	CITATIONS
55	Anti-neutrophil cytoplasmic antibodies and their clinical significance. Clinical Rheumatology, 2018, 37, 875-884.	2.2	37
56	Regulation of Neutrophil Apoptosis. , 2003, 83, 204-224.		36
57	Receptor expression and oxidase activity in human neutrophils: Regulation by granulocyte-macrophage colony-stimulating factor and dependence upon protein biosynthesis. Bioscience Reports, 1990, 10, 393-401.	2.4	33
58	Mucocutaneous manifestations in a UK national cohort of juvenile-onset systemic lupus erythematosus patients. Rheumatology, 2014, 53, 1504-1512.	1.9	30
59	Gamma Interferon Enhances the Killing of Staphylococcus aureus by Human Neutrophils. Microbiology (United Kingdom), 1988, 134, 37-42.	1.8	28
60	Granulocyte-macrophage colony-stimulating factor (GM-CSF) primes the respiratory burst and stimulates protein biosynthesis in human neutrophils. FEBS Letters, 1989, 256, 62-66.	2.8	27
61	Role of Fc gamma receptors in the activation of neutrophils by soluble and insoluble immunoglobulin aggregates isolated from the synovial fluid of patients with rheumatoid arthritis Annals of the Rheumatic Diseases, 1994, 53, 515-520.	0.9	27
62	Protein synthesis is activated in primed neutrophils: a possible role in inflammation. Bioscience Reports, 1987, 7, 881-890.	2.4	25
63	The protective effect of GM-CSF on serum-induced neutrophil apoptosis in juvenile systemic lupus erythematosus patients. Clinical Rheumatology, 2015, 34, 85-91.	2.2	23
64	Heparin derivatives for the targeting of multiple activities in the inflammatory response. Carbohydrate Polymers, 2015, 117, 400-407.	10.2	22
65	<p>Defective Neutrophil Function in Patients with Sepsis Is Mostly Restored by ex vivo Ascorbate Incubation</p> . Journal of Inflammation Research, 2020, Volume 13, 263-274.	3.5	22
66	Oxygen-dependent Killing of Staphylococcus aureus by Human Neutrophils. Microbiology (United) Tj ETQq0 0 0	rgBT_/Ove 1.8	rlo <u>gk</u> 10 Tf 50
67	Chemiluminescence of human bloodstream monocytes and neutrophils: An unusual oxidant(s) generated by monocytes during the respiratory burst. Luminescence, 1992, 7, 229-238.	0.0	21
68	A lack of confirmation with alternative assays questions the validity of IL-17A expression in human neutrophils using immunohistochemistry. Immunology Letters, 2014, 162, 194-198.	2.5	21
69	Oral Ulcers in Juvenile-Onset Systemic Lupus Erythematosus: A Review of the Literature. American Journal of Clinical Dermatology, 2017, 18, 755-762.	6.7	20
70	Activation of Human Neutrophils by Soluble Immune Complexes: Role of Fc?RII and Fc?RIIb in Stimulation of the Respiratory Burst and Elevation of Intracellular Ca2+. Annals of the New York Academy of Sciences, 1997, 832, 341-357.	3.8	19
71	Killing of Escherichia coli by Crohn's Disease Monocyte-derived Macrophages and Its Enhancement by Hydroxychloroquine and Vitamin D. Inflammatory Bowel Diseases, 2015, 21, 1499-1510.	1.9	19
72	Type I interferon regulates cytokine-delayed neutrophil apoptosis, reactive oxygen species production and chemokine expression. Clinical and Experimental Immunology, 2021, 203, 151-159.	2.6	19

#	Article	IF	CITATIONS
73	The clinical significance of fungi in atopic dermatitis. International Journal of Dermatology, 2020, 59, 926-935.	1.0	19
74	Neutrophil apoptosis is delayed by the diadenosine polyphosphates, Ap 5 A and Ap 6 A: synergism with granulocyteâ€nacrophage colonyâ€stimulating factor. British Journal of Haematology, 1996, 95, 637-639.	2.5	18
75	Effect of cytotoxic drugs on mature neutrophil function in the presence and absence of granulocyte-macrophage colony-stimulating factor. British Journal of Haematology, 1993, 84, 316-321.	2.5	17
76	Mavrilimumab, a human monoclonal GM-CSF receptor-α antibody for the management of rheumatoid arthritis: a novel approach to therapy. Expert Opinion on Biological Therapy, 2012, 12, 1661-1668.	3.1	17
77	Differential changes in gene expression in human neutrophils following TNF-α stimulation: Up-regulation of anti-apoptotic proteins and down-regulation of proteins involved in death receptor signaling. Immunity, Inflammation and Disease, 2016, 4, 35-44.	2.7	17
78	Opisthorchiasis-Induced Cholangiocarcinoma. Advances in Parasitology, 2018, 101, 149-176.	3.2	17
79	Cutaneous immunopathology of longâ€ s tanding complex regional pain syndrome. European Journal of Pain, 2015, 19, 1516-1526.	2.8	16
80	Phospholipase D-dependent and-independent activation of the neutrophil NADPH oxidase. Bioscience Reports, 1994, 14, 91-102.	2.4	15
81	Inhibition of pre-B cell colony-enhancing factor (PBEF/NAMPT/visfatin) decreases the ability of human neutrophils to generate reactive oxidants but does not impair bacterial killing. Journal of Leukocyte Biology, 2013, 94, 481-492.	3.3	14
82	Human filarial <i>Wolbachia</i> lipopeptide directly activates human neutrophils <i>in vitro</i> . Parasite Immunology, 2014, 36, 494-502.	1.5	13
83	A robust intracellular metabolite extraction protocol for human neutrophil metabolic profiling. PLoS ONE, 2018, 13, e0209270.	2.5	13
84	Internalization of Neutrophil-Derived Microvesicles Modulates TNFα-Stimulated Proinflammatory Cytokine Production in Human Fibroblast-Like Synoviocytes. International Journal of Molecular Sciences, 2021, 22, 7409.	4.1	13
85	Regulation of Neutrophil Apoptosis by Sodium Butyrate. Biologicals, 1996, 24, 301-306.	1.4	12
86	The CDK inhibitor purvalanol A induces neutrophil apoptosis and increases the turnover rate of Mcl-1: potential role of p38-MAPK in regulation of Mcl-1 turnover. Clinical and Experimental Immunology, 2018, 192, 171-180.	2.6	11
87	The Inhibitory Effect of Validamycin A on Aspergillus flavus. International Journal of Microbiology, 2020, 2020, 1-12.	2.3	11
88	Temperatureâ€compensated ultradian rhythms in lower eukaryotes: Periodic turnover coupled to a timer for cell division. Journal of Interdisciplinary Cycle Research, 1986, 17, 321-326.	0.2	10
89	Serine 162, an Essential Residue for the Mitochondrial Localization, Stability and Anti-Apoptotic Function of Mcl-1. PLoS ONE, 2012, 7, e45088.	2.5	10
90	Relationships between blood leukocyte mitochondrial DNA copy number and inflammatory cytokines in knee osteoarthritis. Journal of Zhejiang University: Science B, 2020, 21, 42-52.	2.8	10

#	Article	IF	CITATIONS
91	Anti-Inflammatory Effects and Decreased Formation of Neutrophil Extracellular Traps by Enoxaparin in COVID-19 Patients. International Journal of Molecular Sciences, 2022, 23, 4805.	4.1	10
92	Formation of myeloperoxidase compound II during aerobic stimulation of rat neutrophils. Bioscience Reports, 1986, 6, 275-282.	2.4	9
93	Inhibition of Neutrophil Superoxide Secretion By of Preservative, Methylhydroxybenzoate: Effects Mediated By Perturbation of Intracellular Ca ²⁺ ?. Free Radical Research Communications, 1990, 10, 333-343.	1.8	9
94	APPA (apocynin and paeonol) modulates pathological aspects of human neutrophil function, without supressing antimicrobial ability, and inhibits TNFα expression and signalling. Inflammopharmacology, 2020, 28, 1223-1235.	3.9	9
95	The relationship between superoxide generation, cytochromeband oxygen in activated neutrophils. FEBS Letters, 1988, 227, 39-42.	2.8	8
96	Sequential phospholipase activation in the stimulation of the neutrophil NADPH oxidase. FEMS Microbiology Letters, 1992, 105, 239-248.	1.8	7
97	High macrophage activities are associated with advanced periductal fibrosis in chronic <i>Opisthorchis viverrini</i> infection. Parasite Immunology, 2019, 41, e12603.	1.5	7
98	CO-reacting haemoproteins of neutrophils: Evidence for cytochrome b-245 and myeloperoxidase as potential oxidases during the respiratory burst. Bioscience Reports, 1987, 7, 193-199.	2.4	6
99	Expression of Fcl ³ RIII in neutrophils in rheumatoid arthritis. Biochemical Society Transactions, 1996, 24, 489S-489S.	3.4	6
100	Enhanced neutrophil functions during Opisthorchis viverrini infections and correlation with advanced periductal fibrosis. International Journal for Parasitology, 2020, 50, 145-152.	3.1	6
101	The Inhibitory Effect of Human Beta-defensin-3 on <i>Candida Glabrata</i> Isolated from Patients with Candidiasis. Immunological Investigations, 2021, 50, 80-91.	2.0	6
102	DcR3 Mutations in Patients with Juvenile-onset Systemic Lupus Erythematosus Lead to Enhanced Lymphocyte Proliferation. Journal of Rheumatology, 2013, 40, 1316-1326.	2.0	5
103	Modulation of neutrophil apoptosis by pharmacological agents. Biochemical Society Transactions, 1996, 24, 492S-492S.	3.4	4
104	Stimulation of Primed Neutrophils by Soluble Immune Complexes. Biologicals, 1996, 24, 307-311.	1.4	4
105	Synovial fluid IL-6 concentrations associated with positive response to tocilizumab in an RA patient with failed response to anti-TNF and rituximab. Rheumatology, 2015, 54, 743-744.	1.9	4
106	Impaired neutrophil killing in a patient with defective degranulation of myeloperoxidase. Journal of Clinical & Laboratory Immunology, 1988, 25, 201-6.	0.1	4
107	Preservation of the activity of NADPH oxidase in human monocyte/macrophages. Biochemical Society Transactions, 1996, 24, 490S-490S.	3.4	3
108	Gene expression by inflammatory neutrophils: stimulation of interleukin-1β production by rheumatoid synovial fluid. Biochemical Society Transactions, 1996, 24, 493S-493S.	3.4	3

#	Article	IF	CITATIONS
109	Interactions between bacterial surfaces and phagocyte plasma membranes. Biochemical Society Transactions, 1989, 17, 460-462.	3.4	2
110	Regulation of neutrophil apoptosis by diadenosine pentaphosphate and GM-CSF. Biochemical Society Transactions, 1996, 24, 491S-491S.	3.4	2
111	Isolation of Microvesicles from Human Circulating Neutrophils. Bio-protocol, 2021, 11, e3119.	0.4	1
112	Stimulation of reactive oxidant production in neutrophils by soluble and insoluble immune complexes occurs via different receptors/signal transduction systems. FEMS Immunology and Medical Microbiology, 1994, 8, 249-257.	2.7	1
113	Effect of azacytidine upon protein synthesis in human neutrophils. Biochemical Society Transactions, 1989, 17, 757-758.	3.4	0
114	Gene expression in human neutrophils. Biochemical Society Transactions, 1989, 17, 755-756.	3.4	0
115	014 APPA inhibits neutrophil pro-inflammatory functions without impairing host defence: is this a potential new therapy for arthritis?. Rheumatology, 2019, 58, .	1.9	0
116	Myeloperoxidase secretion during phagocytosis: a case of a patient with impaired bactericidal activity. Journal of Clinical & Laboratory Immunology, 1988, 27, 97-102.	0.1	0
117	Impaired microbial killing in two patients with defective degranulation of myeloperoxidase. Acta Paediatrica Hungarica, 1988, 29, 101-4.	0.0	0