
Kazuhiro Sakamaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5780721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Execution of Apoptosis Signal-regulating Kinase 1 (ASK1)-induced Apoptosis by the Mitochondria-dependent Caspase Activation. Journal of Biological Chemistry, 2000, 275, 26576-26581.	3.4	309
2	The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature, 1999, 398, 777-785.	27.8	237
3	Regulation Mechanism of Selective Atresia in Porcine Follicles: Regulation of Granulosa Cell Apoptosis during Atresia. Journal of Reproduction and Development, 2004, 50, 493-514.	1.4	175
4	ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Experimental Cell Research, 2003, 283, 156-166.	2.6	169
5	Involvement of fas antigen in ovarian follicular atresia and luteolysis. Molecular Reproduction and Development, 1997, 47, 11-18.	2.0	127
6	Proteolytic activation of MST/Krs, STE20-related protein kinase, by caspase during apoptosis. Oncogene, 1998, 16, 3029-3037.	5.9	122
7	Ex vivo whole-embryo culture of caspase-8-deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death and Differentiation, 2002, 9, 1196-1206.	11.2	113
8	Caspases: evolutionary aspects of their functions in vertebrates. Journal of Fish Biology, 2009, 74, 727-753.	1.6	110
9	Purification, Molecular Cloning, and Characterization of TRP32, a Novel Thioredoxin-related Mammalian Protein of 32 kDa. Journal of Biological Chemistry, 1998, 273, 19160-19166.	3.4	78
10	Expression of Fas Antigen in the Normal Mouse Brain. Biochemical and Biophysical Research Communications, 1998, 252, 623-628.	2.1	76
11	Molecular Cloning and Characterization of the Chromosomal Gene for Human Lactoperoxidase. FEBS Journal, 1997, 243, 32-41.	0.2	61
12	Purification and Cloning of an Apoptosis-Inducing Protein Derived from Fish Infected with Anisakis simplex, a Causative Nematode of Human Anisakiasis. Journal of Immunology, 2000, 165, 1491-1497.	0.8	58
13	Oocyte growth and follicular development in KIT-deficient Fas-knockout mice. Reproduction, 2007, 133, 117-125.	2.6	53
14	Low temperature protects mammalian cells from apoptosis initiated by various stimuli in vitro. Experimental Cell Research, 2005, 309, 264-272.	2.6	51
15	Molecular cloning and characterization of mouse caspase-8. FEBS Journal, 1998, 253, 399-405.	0.2	49
16	Conserved function of caspase-8 in apoptosis during bony fish evolution. Gene, 2007, 396, 134-148.	2.2	49
17	Evolutionary analyses of caspaseâ€8 and its paralogs: Deep origins of the apoptotic signaling pathways. BioEssays, 2015, 37, 767-776.	2.5	48
18	The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1825-1840.	4.1	47

Kazuhiro Sakamaki

#	Article	IF	CITATIONS
19	Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics, 2016, 17, 62.	2.8	45
20	Involvement of death receptor Fas in germ cell degeneration in gonads of Kit-deficient Wv/Wv mutant mice. Cell Death and Differentiation, 2003, 10, 676-686.	11.2	44
21	Identification and Characterization of Rat AILIM/ICOS, a Novel T-Cell Costimulatory Molecule, Related to the CD28/CTLA4 Family. Biochemical and Biophysical Research Communications, 2000, 276, 335-345.	2.1	40
22	Regulation of Endothelial Cell Death and Its Role in Angiogenesis and Vascular Regression. Current Neurovascular Research, 2004, 1, 305-315.	1.1	35
23	Expression and Function of Apoptosis Initiator FOXO3 in Granulosa Cells During Follicular Atresia in Pig Ovaries. Journal of Reproduction and Development, 2011, 57, 151-158.	1.4	34
24	Transgenic <i><scp>X</scp>enopus laevis</i> for live imaging in cell and developmental biology. Development Growth and Differentiation, 2013, 55, 422-433.	1.5	33
25	The evolutionary conservation of the core components necessary for the extrinsic apoptotic signaling pathway, in Medaka fish. BMC Genomics, 2007, 8, 141.	2.8	32
26	cFLIP Regulates Death Receptor-mediated Apoptosis in an Ovarian Granulosa Cell Line by Inhibiting Procaspase-8 Cleavage. Journal of Reproduction and Development, 2008, 54, 314-320.	1.4	27
27	Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells. Developmental Dynamics, 2005, 233, 562-569.	1.8	25
28	TransgenicXenopus laevis strain expressing cre recombinase in muscle cells. Developmental Dynamics, 2006, 235, 2220-2228.	1.8	25
29	The Apoptotic Initiator Caspase-8: Its Functional Ubiquity and Genetic Diversity during Animal Evolution. Molecular Biology and Evolution, 2014, 31, 3282-3301.	8.9	25
30	Apoptosis Occurs in Granulosa Cells but not Cumulus Cells in the Atretic Graafian Follicles in Multiparous Pig Ovaries Acta Histochemica Et Cytochemica, 1997, 30, 85-92.	1.6	24
31	Characteristics of initiation and early events for muscle development in theXenopuslimb bud. Developmental Dynamics, 2005, 234, 846-857.	1.8	22
32	Anti-apoptotic activity of porcine cFLIP in ovarian granulosa cell lines. Molecular Reproduction and Development, 2007, 74, 1165-1170.	2.0	22
33	In Vivo Imaging of Hierarchical Spatiotemporal Activation of Caspase-8 during Apoptosis. PLoS ONE, 2012, 7, e50218.	2.5	22
34	The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity. Genes To Cells, 2004, 9, 1249-1264.	1.2	21
35	Follicle Selection in Mammalian Ovaries: Regulatory Mechanisms of Granulosa Cell Apoptosis during Follicular Atresia. , 2004, , 369-385.		20
36	Reduction of Thymocyte Numbers in Transgenic Mice Expressing Viral FLICEâ€Inhibitory Protein in a Fasâ€Independent Manner. Microbiology and Immunology, 2000, 44, 289-297.	1.4	19

Kazuhiro Sakamaki

#	Article	IF	CITATIONS
37	Monoclonal Antibodies against Pig Ovarian Follicular Granulosa Cells Induce Apoptotic Cell Death in Cultured Granulosa Cells. Journal of Veterinary Medical Science, 1997, 59, 641-649.	0.9	18
38	Age-related thymic involution is mediated by Fas on thymic epithelial cells. International Immunology, 2004, 16, 1027-1035.	4.0	18
39	Molecular Characteristics of Porcine Fas-associated Death Domain (FADD) and Procaspase-8. Journal of Reproduction and Development, 2007, 53, 427-436.	1.4	18
40	Changes in Expression and Localization of X-linked Inhibitor of Apoptosis Protein (XIAP) in Follicular Granulosa Cells During Atresia in Porcine Ovaries. Journal of Reproduction and Development, 2008, 54, 454-459.	1.4	17
41	A Caspase-8-independent Signaling Pathway Activated by Fas Ligation Leads to Exposure of the Bak N Terminus. Journal of Biological Chemistry, 2004, 279, 33865-33874.	3.4	16
42	The initiator caspase, caspase-10β, and the BH-3-only molecule, Bid, demonstrate evolutionary conservation inXenopusof their pro-apoptotic activities in the extrinsic and intrinsic pathways. Genes To Cells, 2006, 11, 701-717.	1.2	15
43	Serum alleviates the requirement of the granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced Ras activation for proliferation of BaF3 cells. FEBS Letters, 1994, 353, 133-137.	2.8	13
44	Physiological and Pathological Cell Deaths in the Reproductive Organs Cell Structure and Function, 2003, 28, 31-40.	1.1	13
45	Functional demonstration of the ability of a primary spermatogonium as a stem cell by tracing a single cell destiny in <i>Xenopus laevis</i> . Development Growth and Differentiation, 2006, 48, 525-535.	1.5	11
46	Identification of Peanut Agglutinin Receptors on Mouse Testicular Germ Cells. Biology of Reproduction, 1989, 41, 1097-1102.	2.7	8
47	Caspase-8 cleavage of the interleukin-21 (IL-21) receptor is a negative feedback regulator of IL-21 signaling. FEBS Letters, 2011, 585, 1835-1840.	2.8	7
48	Dysregulation of a potassium channel, THIK-1, targeted by caspase-8 accelerates cell shrinkage. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2766-2783.	4.1	7
49	Multiple functions of <scp>FADD</scp> in apoptosis, <scp>NF</scp> â€₽Bâ€related signaling, and heart development in <i>Xenopus</i> embryos. Genes To Cells, 2012, 17, 875-896.	1.2	6
50	Conservation of structure and function in vertebrate c-FLIP proteins despite rapid evolutionary change. Biochemistry and Biophysics Reports, 2015, 3, 175-189.	1.3	5
51	Signal Transmission of Granulosa Cell Apoptosis in the Atretic Antral Follicles in the Pig Ovaries. Journal of Reproduction and Development, 1996, 42, j135-j141.	1.4	5
52	Identification of the Specific Proteins Associated with Differentiation of Spermatogonia in Mice by Two-Dimensional Gel Electrophoresis. Biology of Reproduction, 1987, 37, 989-994.	2.7	2
53	Secretion of Plasminogen Activator in Response to Follicle‣timulating Hormone in Culture Medium of Human Testicular Cells from Biopsy Specimens. Journal of Andrology, 1989, 10, 283-288.	2.0	2
54	Partial Correction of Abnormal Cardiac Development in Caspase-8-deficient Mice by Cardiomyocyte Expression of p35. Transgenic Research, 2005, 14, 593-604.	2.4	2