Song-Lin Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5780515/publications.pdf

Version: 2024-02-01

53 papers

8,627 citations

28 h-index 52 g-index

68 all docs 68
docs citations

68 times ranked 13208 citing authors

#	Article	IF	CITATIONS
1	Conserved cell types with divergent features in human versus mouse cortex. Nature, 2019, 573, 61-68.	27.8	1,198
2	Transcriptional landscape of the prenatal human brain. Nature, 2014, 508, 199-206.	27.8	1,147
3	The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell, 2020, 181, 936-953.e20.	28.9	597
4	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	12.6	516
5	A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell, 2021, 184, 3222-3241.e26.	28.9	479
6	Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Human Brain Mapping, 2015, 36, 258-287.	3.6	454
7	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	27.8	361
8	A comprehensive transcriptional map of primate brain development. Nature, 2016, 535, 367-375.	27.8	341
9	Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nature Neuroscience, 2019, 22, 1182-1195.	14.8	333
10	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	27.8	316
11	Comprehensive cellularâ€resolution atlas of the adult human brain. Journal of Comparative Neurology, 2016, 524, 3127-3481.	1.6	302
12	Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage, 2015, 111, 526-541.	4.2	284
13	Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nature Neuroscience, 2018, 21, 1185-1195.	14.8	212
14	Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. Journal of Comparative Neurology, 2013, 521, 4145-4162.	1.6	175
15	Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. Journal of Comparative Neurology, 2009, 514, 595-623.	1.6	174
16	Large-Scale Brain Networks of the Human Left Temporal Pole: A Functional Connectivity MRI Study. Cerebral Cortex, 2015, 25, 680-702.	2.9	169
17	Human neocortical expansion involves glutamatergic neuron diversification. Nature, 2021, 598, 151-158.	27.8	160
18	Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4252-4257.	7.1	136

#	Article	IF	Citations
19	Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of Cyto―and chemoarchitecture. Journal of Comparative Neurology, 2015, 523, 2233-2253.	1.6	121
20	A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. NeuroImage: Clinical, 2017, 15, 466-482.	2.7	111
21	Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. Journal of Comparative Neurology, 2000, 425, 510-530.	1.6	100
22	Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Human Brain Mapping, 2010, 31, 1359-1379.	3.6	91
23	Automated segmentation of medial temporal lobe subregions on in vivo T1â€weighted MRI in early stages of Alzheimer's disease. Human Brain Mapping, 2019, 40, 3431-3451.	3.6	71
24	Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons. Nature Communications, 2020, 11, 1172.	12.8	70
25	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	10.3	68
26	A Knock-In Reporter Model of Batten Disease. Journal of Neuroscience, 2007, 27, 9826-9834.	3.6	52
27	Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum along the Dorsal-Ventral Axis. Cell Reports, 2020, 31, 107648.	6.4	49
28	Combinatorial Inputs to the Ventral Striatum from the Temporal Cortex, Frontal Cortex, and Amygdala: Implications for Segmenting the Striatum. ENeuro, 2017, 4, ENEURO.0392-17.2017.	1.9	46
29	Progress update from the hippocampal subfields group. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 439-449.	2.4	34
30	Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. Journal of Comparative Neurology, 2003, 456, 184-201.	1.6	32
31	Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation. Hippocampus, 2020, 30, 545-564.	1.9	31
32	Multi-template analysis of human perirhinal cortex in brain MRI: Explicitly accounting for anatomical variability. Neurolmage, 2017, 144, 183-202.	4.2	30
33	Stratum radiatum of CA2 is an additional target of the perforant path in humans and monkeys. NeuroReport, 2010, 21, 245-249.	1.2	18
34	Modular organization of the monkey presubiculum. Experimental Brain Research, 2001, 139, 255-265.	1.5	17
35	Localization of area prostriata and its connections with primary visual cortex in rodent. Journal of Comparative Neurology, 2020, 528, 389-406.	1.6	17
36	A modification of biotinylated dextran amine histochemistry for labeling the developing mammalian brain. Journal of Neuroscience Methods, 1995, 57, 67-75.	2.5	15

#	Article	IF	CITATIONS
37	Postnatal development of biotinylated dextran amine-labeled corpus callosum axons projecting from the visual and auditory cortices to the visual cortex of the rat. Experimental Brain Research, 2001, 136, 179-193.	1.5	15
38	A knock-in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures. Neurobiology of Disease, 2011, 41, 237-248.	4.4	14
39	Cellular resolution anatomical and molecular atlases for prenatal human brains. Journal of Comparative Neurology, 2022, 530, 6-503.	1.6	14
40	Parvalbumin immunoreactive Cajal-Retzius and non-Cajal-Retzius neurons in layer I of different cortical regions of human newborn. Anatomy and Embryology, 2000, 201, 407-417.	1.5	11
41	Confirmation of the existence of transitory corpus callosum axons in area 17 of neonatal cat: an anterograde tracing study using biotinylated dextran amine. Neuroscience Letters, 1994, 177, 66-70.	2.1	10
42	A Taxonomy of Transcriptomic Cell Types Across the Isocortex and Hippocampal Formation. SSRN Electronic Journal, $0, , .$	0.4	10
43	Automatic Clustering and Thickness Measurement of Anatomical Variants of the Human Perirhinal Cortex. Lecture Notes in Computer Science, 2014, 17, 81-88.	1.3	9
44	Neuropeptide Y- and somatostatin-immunoreactive axons in the corpus callosum during postnatal development of the rat. Developmental Brain Research, 2000, 124, 59-65.	1.7	8
45	Comprehensive cellularâ€resolution atlas of the adult human brain. Journal of Comparative Neurology, 2016, 524, Spc1.	1.6	8
46	Afferent Projections to Area Prostriata of the Mouse. Frontiers in Neuroanatomy, 2020, 14, 605021.	1.7	7
47	Rodent Area Prostriata Converges Multimodal Hierarchical Inputs and Projects to the Structures Important for Visuomotor Behaviors. Frontiers in Neuroscience, 2021, 15, 772016.	2.8	6
48	Chemoarchitecture of area prostriata in adult and developing mice: Comparison with presubiculum and parasubiculum. Journal of Comparative Neurology, 2022, 530, 2486-2517.	1.6	5
49	Neuropeptide Y immunoreactive axons in the corpus callosum of the cat during postnatal development. Anatomy and Embryology, 1994, 190, 55-63.	1.5	4
50	Homotopic Commissural Projections of Area Prostriata in Rat and Mouse: Comparison With Presubiculum and Parasubiculum. Frontiers in Neural Circuits, 2020, 14, 605332.	2.8	4
51	The development of a valid, reliable, harmonized segmentation protocol for hippocampal subfields and medial temporal lobe cortices: A progress update. Alzheimer's and Dementia, 2020, 16, e046652.	0.8	2
52	[P4–507]: ALZHEIMER's DISEASE AND THE HIPPOCAMPUS: NOVEL INSIGHTS FROM AN EX VIVO COMPUTATIONAL ATLAS COMBINING MRI AND HISTOLOGY. Alzheimer's and Dementia, 2017, 13, P1534.	0.8	0
53	P4â€591: THE DEVELOPMENT OF A HARMONIZED SEGMENTATION PROTOCOL FOR HIPPOCAMPAL SUBFIELDS: AN UPDATE. Alzheimer's and Dementia, 2019, 15, P1549.	0.8	0