
Piotr BÅ,oÅ,,ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5780384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. Journal of the American Chemical Society, 2017, 139, 3171-3180.	13.7	202
2	Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chemical Society Reviews, 2018, 47, 3899-3990.	38.1	161
3	Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano, 2017, 11, 2982-2991.	14.6	133
4	Magnetic anisotropy of transition-metal dimers: Density functional calculations. Physical Review B, 2009, 79, .	3.2	114
5	Room temperature organic magnets derived from sp3 functionalized graphene. Nature Communications, 2017, 8, 14525.	12.8	112
6	Magnetic anisotropy of Fe and Co ultrathin films deposited on Rh(111) and Pt(111) substrates: An experimental and first-principles investigation. Physical Review B, 2010, 82, .	3.2	106
7	Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Advanced Materials, 2016, 28, 5045-5053.	21.0	94
8	Magnetocrystalline anisotropy energy of Co and Fe adatoms on the (111) surfaces of Pd and Rh. Physical Review B, 2010, 81, .	3.2	82
9	Strong spin–orbit effects in small Pt clusters: Geometric structure,magnetic isomers and anisotropy. Journal of Chemical Physics, 2011, 134, 034107.	3.0	79
10	Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831.	12.8	68
11	Geometric and magnetic properties of Pt clusters supported on graphene: Relativistic density-functional calculations. Journal of Chemical Physics, 2011, 134, 154705.	3.0	60
12	Density-functional theory of the magnetic anisotropy of nanostructures: an assessment of different approximations. Journal of Physics Condensed Matter, 2009, 21, 426001.	1.8	53
13	Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy and Environmental Science, 2022, 15, 740-748.	30.8	51
14	Dissociative adsorption of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi mathvariant="normal">O<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:math> molecules on O-precovered Fe(110) and Fe(100): Density-functional calculations. Physical Review B, 2008, 77, .	3.2	34
15	Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study. Journal of Physics Condensed Matter, 2011, 23, 136001.	1.8	32
16	Intrinsic photoluminescence of amine-functionalized graphene derivatives for bioimaging applications. Applied Materials Today, 2019, 17, 112-122.	4.3	25
17	Alkynylation of graphene <i>via</i> the Sonogashira C–C cross-coupling reaction on fluorographene. Chemical Communications, 2019, 55, 1088-1091.	4.1	23
18	Variability of C–F Bonds Governs the Formation of Specific Structural Motifs in Fluorinated Graphenes. Journal of Physical Chemistry C, 2019, 123, 27896-27903.	3.1	22

Piotr Bå,oå,,ski

#	Article	IF	CITATIONS
19	Tailoring Electronic and Magnetic Properties of Graphene by Phosphorus Doping. ACS Applied Materials & Interfaces, 2020, 12, 34074-34085.	8.0	20
20	Zigzag sp ² Carbon Chains Passing through an sp ³ Framework: A Driving Force toward Room-Temperature Ferromagnetic Graphene. ACS Nano, 2018, 12, 12847-12859.	14.6	19
21	Pt on graphene monolayers supported on a Ni(111) substrate: Relativistic density-functional calculations. Journal of Chemical Physics, 2012, 136, 074701.	3.0	17
22	How Theoretical Simulations Can Address the Structure and Activity of Nanoparticles. Topics in Catalysis, 2013, 56, 1262-1272.	2.8	16
23	First-principles study of LiBH4 nanoclusters interaction with models of porous carbon and silica scaffolds. International Journal of Hydrogen Energy, 2014, 39, 9848-9853.	7.1	15
24	Microwave Energy Drives "On–Off–On―Spinâ€&witch Behavior in Nitrogenâ€Doped Graphene. Advance Materials, 2019, 31, e1902587.	ed _{21.0}	15
25	Thermally reduced fluorographenes as efficient electrode materials for supercapacitors. Nanoscale, 2019, 11, 21364-21375.	5.6	15
26	Anchoring of single-platinum-adatoms on cyanographene: Experiment and theory. Applied Materials Today, 2020, 18, 100462.	4.3	14
27	On-Surface Synthesis of One-Dimensional Coordination Polymers with Tailored Magnetic Anisotropy. ACS Applied Materials & Interfaces, 2021, 13, 32393-32401.	8.0	14
28	Pt3 and Pt4 clusters on graphene monolayers supported on a Ni(111) substrate: Relativistic density-functional calculations. Journal of Chemical Physics, 2012, 137, 044710.	3.0	13
29	Graphene Lattices with Embedded Transition-Metal Atoms and Tunable Magnetic Anisotropy Energy: Implications for Spintronic Devices. ACS Applied Nano Materials, 2022, 5, 1562-1573.	5.0	13
30	First-principles study of the mechanism of wettability transition of defective graphene. Nanotechnology, 2017, 28, 064003.	2.6	11
31	Large magnetic anisotropy in an Oslr dimer anchored in defective graphene. Nanotechnology, 2021, 32, 230001.	2.6	10
32	Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations. Journal of Physics Condensed Matter, 2014, 26, 146002.	1.8	8
33	Tuning the magnetic properties of graphene derivatives by functional group selection. Physical Chemistry Chemical Physics, 2019, 21, 12697-12703.	2.8	8
34	Thermally induced intra-molecular transformation and metalation of free-base porphyrin on Au(111) surface steered by surface confinement and ad-atoms. Nanoscale Advances, 2020, 2, 2986-2991.	4.6	8
35	Band-Edge Engineering at the Carbon Dot–TiO ₂ Interface by Substitutional Boron Doping. Journal of Physical Chemistry C, 2019, 123, 5980-5988.	3.1	6
36	On the interplay between geometrical structure and magnetic anisotropy: a relativistic density-functional study of mixed Pt–Co and Pt–Fe trimers and tetramers in the gas-phase and supported on graphene. Journal of Physics Condensed Matter, 2015, 27, 046002.	1.8	5

Piotr Bå,oå,,ski

#	Article	IF	CITATIONS
37	Ferromagnetism: Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5139-5139.	21.0	5
38	Morphologyâ€Dependent Magnetism in Nanographene: Beyond Nanoribbons. Advanced Functional Materials, 2018, 28, 1800592.	14.9	5
39	Free Energy Assessment of Water Structures and Their Dissociation on Ru(0001). Journal of Physical Chemistry C, 2015, 119, 5478-5483.	3.1	4
40	OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage. Nanotechnology, 2022, 33, 215001.	2.6	3
41	Graphene: Morphology-Dependent Magnetism in Nanographene: Beyond Nanoribbons (Adv. Funct.) Tj ETQq1 1 C).784314 (14.9	rgBT /Overloo
42	OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage. Nanotechnology, 2022, , .	2.6	0