List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5779109/publications.pdf Version: 2024-02-01

		186	162
678	122,834	151	323
papers	citations	h-index	g-index
754	754	754	84308
all docs	docs citations	times ranked	citing authors

ΙΠΠΑΝ ΡΑΦΚΗΠΙ

#	Article	IF	CITATIONS
1	A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464, 59-65.	27.8	9,342
2	Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393, 537-544.	27.8	7,357
3	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	27.8	5,800
4	Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015, 31, 3691-3693.	4.1	4,099
5	Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417, 141-147.	27.8	2,940
6	Artemis: sequence visualization and annotation. Bioinformatics, 2000, 16, 944-945.	4.1	2,912
7	Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 2014, 12, 87.	3.8	2,677
8	The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 2000, 403, 665-668.	27.8	1,869
9	Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Research, 2015, 43, e15-e15.	14.5	1,834
10	Massive gene decay in the leprosy bacillus. Nature, 2001, 409, 1007-1011.	27.8	1,607
11	ACT: the Artemis comparison tool. Bioinformatics, 2005, 21, 3422-3423.	4.1	1,536
12	Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal, 2011, 5, 220-230.	9.8	1,352
13	Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 2001, 413, 848-852.	27.8	1,192
14	Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001, 413, 523-527.	27.8	1,144
15	The minimum information about a genome sequence (MIGS) specification. Nature Biotechnology, 2008, 26, 541-547.	17.5	1,069
16	Evolution of MRSA During Hospital Transmission and Intercontinental Spread. Science, 2010, 327, 469-474.	12.6	1,054
17	Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics, 2012, 28, 464-469.	4.1	1,029
18	The genome of the blood fluke Schistosoma mansoni. Nature, 2009, 460, 352-358.	27.8	945

#	Article	IF	CITATIONS
19	Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biology, 2015, 16, 294.	8.8	910
20	Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLoS Biology, 2007, 5, e244.	5.6	905
21	Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature Genetics, 2013, 45, 1176-1182.	21.4	900
22	Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nature Genetics, 2003, 35, 32-40.	21.4	898
23	The complete genome sequence of <i>Mycobacterium bovis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7877-7882.	7.1	882
24	Complete genomes of two clinical <i>Staphylococcus aureus</i> strains: Evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9786-9791.	7.1	830
25	Rapid Pneumococcal Evolution in Response to Clinical Interventions. Science, 2011, 331, 430-434.	12.6	828
26	The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genetics, 2006, 38, 779-786.	21.4	821
27	DNAPlotter: circular and linear interactive genome visualization. Bioinformatics, 2009, 25, 119-120.	4.1	801
28	Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infectious Diseases, The, 2013, 13, 137-146.	9.1	786
29	Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infectious Diseases, The, 2011, 11, 595-603.	9.1	751
30	Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature, 2000, 404, 502-506.	27.8	687
31	Genomic plasticity of the causative agent of melioidosis, <i>Burkholderia pseudomallei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14240-14245.	7.1	675
32	Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nature Genetics, 2013, 45, 109-113.	21.4	669
33	Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes. PLoS Genetics, 2006, 2, e31.	3.5	661
34	Evidence for several waves of global transmission in the seventh cholera pandemic. Nature, 2011, 477, 465.	27.8	649
35	Rapid Whole-Genome Sequencing for Investigation of a Neonatal MRSA Outbreak. New England Journal of Medicine, 2012, 366, 2267-2275.	27.0	609
36	High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiology, 2011, 11, 7.	3.3	596

#	Article	IF	CITATIONS
37	Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet, The, 2013, 381, 1551-1560.	13.7	596
38	Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics, 2008, 24, 2672-2676.	4.1	578
39	Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infectious Diseases, The, 2015, 15, 1193-1202.	9.1	553
40	Simultaneous assay of every <i>Salmonella</i> Typhi gene using one million transposon mutants. Genome Research, 2009, 19, 2308-2316.	5.5	544
41	Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infectious Diseases, The, 2013, 13, 130-136.	9.1	531
42	Human placenta has no microbiome but can contain potential pathogens. Nature, 2019, 572, 329-334.	27.8	513
43	Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 2014, 514, 494-497.	27.8	506
44	Epidemic multiple drug resistant <i>Salmonella</i> Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Research, 2009, 19, 2279-2287.	5.5	504
45	Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice. PLoS Pathogens, 2012, 8, e1002995.	4.7	504
46	Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics, 2013, 45, 450-455.	21.4	500
47	The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biology, 2006, 7, R34.	9.6	489
48	Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 2015, 6, 8322.	12.8	488
49	Genome plasticity of BCG and impact on vaccine efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5596-5601.	7.1	486
50	ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microbial Genomics, 2017, 3, e000131.	2.0	478
51	Insights from the complete genome sequence of <i>Mycobacterium marinum</i> on the evolution of <i>Mycobacterium tuberculosis</i> . Genome Research, 2008, 18, 729-741.	5.5	471
52	Microevolution and history of the plague bacillus, Yersinia pestis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17837-17842.	7.1	463
53	Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science, 2016, 354, 751-757.	12.6	462
54	High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nature Genetics, 2008, 40, 987-993.	21.4	453

#	Article	IF	CITATIONS
55	The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biology, 2008, 9, R74.	9.6	452
56	Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nature Genetics, 2014, 46, 279-286.	21.4	451
57	Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLoS Pathogens, 2012, 8, e1002824.	4.7	450
58	Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biology, 2009, 10, R102.	9.6	431
59	Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biology, 2020, 21, 180.	8.8	419
60	A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant <i>Staphylococcus aureus</i> pandemic. Genome Research, 2013, 23, 653-664.	5.5	412
61	Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nature Genetics, 2015, 47, 632-639.	21.4	403
62	Comparative genome analysis of <i>Salmonella</i> Enteritidis PT4 and <i>Salmonella</i> Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Research, 2008, 18, 1624-1637.	5.5	394
63	Genome Project Standards in a New Era of Sequencing. Science, 2009, 326, 236-237.	12.6	382
64	Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the <i>Salmonella</i> pathogenicity islands. Bioinformatics, 2006, 22, 2196-2203.	4.1	377
65	Dense genomic sampling identifies highways of pneumococcal recombination. Nature Genetics, 2014, 46, 305-309.	21.4	371
66	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	9.6	370
67	Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nature Genetics, 2012, 44, 1215-1221.	21.4	370
68	Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11105-11110.	7.1	366
69	Population genomics of post-vaccine changes in pneumococcal epidemiology. Nature Genetics, 2013, 45, 656-663.	21.4	364
70	Evolutionary dynamics of <i>Clostridium difficile</i> over short and long time scales. Proceedings of the United States of America, 2010, 107, 7527-7532.	7.1	346
71	Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Research, 2007, 17, 192-200.	5.5	345
72	The Genome of <i>Burkholderia cenocepacia</i> J2315, an Epidemic Pathogen of Cystic Fibrosis Patients. Journal of Bacteriology, 2009, 191, 261-277.	2.2	329

#	Article	IF	CITATIONS
73	Microbiology in the post-genomic era. Nature Reviews Microbiology, 2008, 6, 419-430.	28.6	324
74	Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of <i>Pseudomonas aeruginosa</i> . Genome Research, 2009, 19, 12-23.	5.5	317
75	Antibiotic Treatment of <i>Clostridium difficile</i> Carrier Mice Triggers a Supershedder State, Spore-Mediated Transmission, and Severe Disease in Immunocompromised Hosts. Infection and Immunity, 2009, 77, 3661-3669.	2.2	315
76	Accelerated telomere shortening in ataxia telangiectasia. Nature Genetics, 1996, 13, 350-353.	21.4	314
77	Distinguishable Epidemics of Multidrug-Resistant <i>Salmonella</i> Typhimurium DT104 in Different Hosts. Science, 2013, 341, 1514-1517.	12.6	310
78	Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology, 2016, 14, 3.	3.8	308
79	The Transcription Factor T-bet Regulates Intestinal Inflammation Mediated by Interleukin-7 Receptor+ Innate Lymphoid Cells. Immunity, 2012, 37, 674-684.	14.3	305
80	Complete Genome Sequence and Comparative Genome Analysis of Enteropathogenic <i>Escherichia coli</i> O127:H6 Strain E2348/69. Journal of Bacteriology, 2009, 191, 347-354.	2.2	299
81	Comparative Genomic Structure of Prokaryotes. Annual Review of Genetics, 2004, 38, 771-791.	7.6	293
82	The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Research, 2003, 31, 6516-6523.	14.5	285
83	Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nature Genetics, 2012, 44, 413-419.	21.4	279
84	Whole Genome Comparison of <i>Campylobacter jejuni</i> Human Isolates Using a Low-Cost Microarray Reveals Extensive Genetic Diversity. Genome Research, 2001, 11, 1706-1715.	5.5	278
85	Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nature Genetics, 2012, 44, 1056-1059.	21.4	278
86	Extensive DNA Inversions in the B. fragilis Genome Control Variable Gene Expression. Science, 2005, 307, 1463-1465.	12.6	275
87	Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nature Genetics, 2018, 50, 307-316.	21.4	271
88	Complete Sequence and Organization of pBtoxis, the Toxin-Coding Plasmid of Bacillus thuringiensis subsp. israelensis. Applied and Environmental Microbiology, 2002, 68, 5082-5095.	3.1	270
89	Complete Genome Sequence and Lytic Phase Transcription Profile of a <i>Coccolithovirus</i> . Science, 2005, 309, 1090-1092.	12.6	270
90	Genome-wide association study identifies vitamin B ₅ biosynthesis as a host specificity factor in <i>Campylobacter</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11923-11927.	7.1	267

#	Article	IF	CITATIONS
91	Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nature Genetics, 2013, 45, 172-179.	21.4	264
92	Description and Nomenclature of <i>Neisseria meningitidis</i> Capsule Locus. Emerging Infectious Diseases, 2013, 19, 566-573.	4.3	259
93	Global Population Structure and Evolution of Bordetella pertussis and Their Relationship with Vaccination. MBio, 2014, 5, e01074.	4.1	257
94	Genomic history of the seventh pandemic of cholera in Africa. Science, 2017, 358, 785-789.	12.6	255
95	Recognizing the reagent microbiome. Nature Microbiology, 2018, 3, 851-853.	13.3	255
96	Comparative Genomic Analyses of Seventeen <i>Streptococcus pneumoniae</i> Strains: Insights into the Pneumococcal Supragenome. Journal of Bacteriology, 2007, 189, 8186-8195.	2.2	249
97	Reverse Transcriptase-Mediated Tropism Switching in <i>Bordetella</i> Bacteriophage. Science, 2002, 295, 2091-2094.	12.6	247
98	Microbial genome-wide association studies: lessons from human GWAS. Nature Reviews Genetics, 2017, 18, 41-50.	16.3	239
99	The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S rRNA Gene Sequencing. PLoS ONE, 2014, 9, e88982.	2.5	236
100	Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet, The, 2003, 361, 637-644.	13.7	232
101	Systematic longitudinal survey of invasive <i>Escherichia coli</i> in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Research, 2017, 27, 1437-1449.	5.5	231
102	Complete Genome Sequence of Uropathogenic <i>Proteus mirabilis</i> , a Master of both Adherence and Motility. Journal of Bacteriology, 2008, 190, 4027-4037.	2.2	229
103	Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Research, 2007, 17, 1082-1092.	5.5	228
104	A decade of advances in transposon-insertion sequencing. Nature Reviews Genetics, 2020, 21, 526-540.	16.3	228
105	The Complete Genome Sequence and Comparative Genome Analysis of the High Pathogenicity Yersinia enterocolitica Strain 8081. PLoS Genetics, 2006, 2, e206.	3.5	227
106	Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME Journal, 2011, 5, 780-791.	9.8	222
107	Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. Genome Biology, 2014, 15, R76.	9.6	219
108	GeneDBan annotation database for pathogens. Nucleic Acids Research, 2012, 40, D98-D108.	14.5	217

#	Article	IF	CITATIONS
109	Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Molecular Microbiology, 2006, 61, 1267-1282.	2.5	216
110	Multireplicon genome architecture of Lactobacillus salivarius. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6718-6723.	7.1	216
111	Rapid Evolution of Virulence and Drug Resistance in the Emerging Zoonotic Pathogen Streptococcus suis. PLoS ONE, 2009, 4, e6072.	2.5	214
112	Patterns of genome evolution that have accompanied host adaptation in <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 863-868.	7.1	213
113	Genome Sequence of a Recently Emerged, Highly Transmissible, Multi-Antibiotic- and Antiseptic-Resistant Variant of Methicillin-Resistant <i>Staphylococcus aureus</i> , Sequence Type 239 (TW). Journal of Bacteriology, 2010, 192, 888-892.	2.2	211
114	Genome Evolution of Wolbachia Strain wPip from the Culex pipiens Group. Molecular Biology and Evolution, 2008, 25, 1877-1887.	8.9	210
115	Proteomic and Genomic Characterization of Highly Infectious <i>Clostridium difficile</i> 630 Spores. Journal of Bacteriology, 2009, 191, 5377-5386.	2.2	210
116	Sequence-Based Analysis Uncovers an Abundance of Non-Coding RNA in the Total Transcriptome of Mycobacterium tuberculosis. PLoS Pathogens, 2011, 7, e1002342.	4.7	210
117	Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline. Nature Communications, 2014, 5, 4544.	12.8	208
118	16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome, 2015, 3, 26.	11.1	208
119	Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microbial Genomics, 2016, 2, e000083.	2.0	208
120	<i>Chlamydia trachomatis</i> : Genome sequence analysis of lymphogranuloma venereum isolates. Genome Research, 2008, 18, 161-171.	5.5	207
121	Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes. PLoS Genetics, 2014, 10, e1004547.	3.5	205
122	Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infectious Diseases, The, 2015, 15, 913-921.	9.1	204
123	A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi. PLoS Genetics, 2009, 5, e1000569.	3.5	202
124	Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 15-22.	1.7	201
125	GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Research, 2004, 32, 339D-343.	14.5	199
126	Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. ELife, 2015, 4, .	6.0	198

#	Article	IF	CITATIONS
127	Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens. PLoS Pathogens, 2009, 5, e1000346.	4.7	197
128	Whole-Genome Sequencing for Rapid Susceptibility Testing of <i>M. tuberculosis</i> . New England Journal of Medicine, 2013, 369, 290-292.	27.0	195
129	Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infectious Diseases, The, 2014, 14, 220-226.	9.1	193
130	Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biology, 2017, 18, 130.	8.8	193
131	Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel <i>mecA</i> homologue <i>mecC</i> . EMBO Molecular Medicine, 2013, 5, 509-515.	6.9	192
132	Whole-Genome Sequencing for Routine Pathogen Surveillance in Public Health: a Population Snapshot of Invasive Staphylococcus aureus in Europe. MBio, 2016, 7, .	4.1	192
133	Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nature Genetics, 2016, 48, 1211-1217.	21.4	191
134	Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains. PLoS Biology, 2014, 12, e1001920.	5.6	190
135	Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nature Communications, 2016, 7, 12797.	12.8	190
136	Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics, 2007, 8, 162.	2.8	189
137	Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respiratory Medicine,the, 2013, 1, 786-792.	10.7	184
138	Rapid Bacterial Whole-Genome Sequencing to Enhance Diagnostic and Public Health Microbiology. JAMA Internal Medicine, 2013, 173, 1397.	5.1	181
139	Inferring patient to patient transmission of Mycobacterium tuberculosisfrom whole genome sequencing data. BMC Infectious Diseases, 2013, 13, 110.	2.9	180
140	Comprehensive Assignment of Roles for Salmonella Typhimurium Genes in Intestinal Colonization of Food-Producing Animals. PLoS Genetics, 2013, 9, e1003456.	3.5	176
141	Molecular tracing of the emergence, diversification, and transmission of <i>S. aureus</i> sequence type 8 in a New York community. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6738-6743.	7.1	176
142	Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9107-9112.	7.1	174
143	Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Research, 2012, 22, 735-745.	5.5	173
144	Pneumococcal Capsular Switching: A Historical Perspective. Journal of Infectious Diseases, 2013, 207, 439-449.	4.0	172

#	Article	IF	CITATIONS
145	Salmonella bongori Provides Insights into the Evolution of the Salmonellae. PLoS Pathogens, 2011, 7, e1002191.	4.7	171
146	Role of Conjugative Elements in the Evolution of the Multidrug-Resistant Pandemic Clone <i>Streptococcus pneumoniae</i> ^{Spain23F} ST81. Journal of Bacteriology, 2009, 191, 1480-1489.	2.2	168
147	A Commensal Gone Bad: Complete Genome Sequence of the Prototypical Enterotoxigenic <i>Escherichia coli</i> Strain H10407. Journal of Bacteriology, 2010, 192, 5822-5831.	2.2	168
148	Meningococcal Genetic Variation Mechanisms Viewed through Comparative Analysis of Serogroup C Strain FAM18. PLoS Genetics, 2007, 3, e23.	3.5	167
149	The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics, 2016, 32, 1109-1111.	4.1	167
150	Salmonella enterica Serovar Typhi Possesses a Unique Repertoire of Fimbrial Gene Sequences. Infection and Immunity, 2001, 69, 2894-2901.	2.2	166
151	The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid, 2004, 52, 182-202.	1.4	166
152	Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042. PLoS ONE, 2010, 5, e8801.	2.5	165
153	A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics, 2014, 15, 1138.	2.8	164
154	Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Molecular Microbiology, 2004, 55, 90-103.	2.5	162
155	Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics, 2009, 10, 36.	2.8	161
156	Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota. PLoS ONE, 2013, 8, e76573.	2.5	159
157	The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Research, 2005, 15, 629-640.	5.5	158
158	Microevolution of Monophasic <i>Salmonella</i> Typhimurium during Epidemic, United Kingdom, 2005–2010. Emerging Infectious Diseases, 2016, 22, 617-624.	4.3	158
159	The <i>Citrobacter rodentium</i> Genome Sequence Reveals Convergent Evolution with Human Pathogenic <i>Escherichia coli</i> . Journal of Bacteriology, 2010, 192, 525-538.	2.2	156
160	Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nature Ecology and Evolution, 2018, 2, 1468-1478.	7.8	156
161	Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen. Genome Biology and Evolution, 2014, 6, 2096-2110.	2.5	155
162	Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax, 2016, 71, 795-803.	5.6	155

#	Article	IF	CITATIONS
163	Parallel independent evolution of pathogenicity within the genus <i>Yersinia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6768-6773.	7.1	154
164	The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. Journal of Antimicrobial Chemotherapy, 2012, 67, 2809-2813.	3.0	153
165	A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology (United Kingdom), 2012, 158, 1570-1580.	1.8	153
166	Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiology, 2016, 16, 274.	3.3	153
167	Recurrence due to Relapse or Reinfection With <i>Mycobacterium tuberculosis</i> : A Whole-Genome Sequencing Approach in a Large, Population-Based Cohort With a High HIV Infection Prevalence and Active Follow-up. Journal of Infectious Diseases, 2015, 211, 1154-1163.	4.0	149
168	The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions. PLoS Genetics, 2010, 6, e1001145.	3.5	143
169	Composition, Acquisition, and Distribution of the Vi Exopolysaccharide-Encoding Salmonella enterica Pathogenicity Island SPI-7. Journal of Bacteriology, 2003, 185, 5055-5065.	2.2	142
170	A Very Early-Branching Staphylococcus aureus Lineage Lacking the Carotenoid Pigment Staphyloxanthin. Genome Biology and Evolution, 2011, 3, 881-895.	2.5	142
171	Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature, 2005, 436, 257-260.	27.8	139
172	Lung function and microbiota diversity in cystic fibrosis. Microbiome, 2020, 8, 45.	11.1	138
173	Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 2022, 602, 135-141.	27.8	138
174	The Burkholderia cepacia Epidemic Strain Marker Is Part of a Novel Genomic Island Encoding Both Virulence and Metabolism-Associated Genes in Burkholderia cenocepacia. Infection and Immunity, 2004, 72, 1537-1547.	2.2	134
175	Rapid Emergence of Multidrug Resistant, H58-Lineage Salmonella Typhi in Blantyre, Malawi. PLoS Neglected Tropical Diseases, 2015, 9, e0003748.	3.0	133
176	Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia. PLoS Neglected Tropical Diseases, 2010, 4, e757.	3.0	131
177	Cryptic ecology among host generalist <i>Campylobacter jejuni</i> in domestic animals. Molecular Ecology, 2014, 23, 2442-2451.	3.9	131
178	Essential roles of methionine and <i>S</i> -adenosylmethionine in the autarkic lifestyle of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10008-10013.	7.1	130
179	One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock. MBio, 2019, 10, .	4.1	130
180	Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biology, 2015, 16, 81.	8.8	129

#	Article	IF	CITATIONS
181	Progressive genomeâ€wide introgression in agricultural <i>Campylobacter coli</i> . Molecular Ecology, 2013, 22, 1051-1064.	3.9	128
182	Integrated view of <i>Vibrio cholerae</i> in the Americas. Science, 2017, 358, 789-793.	12.6	128
183	Phylogenetic Relationships of the Wolbachia of Nematodes and Arthropods. PLoS Pathogens, 2006, 2, e94.	4.7	127
184	Real-Time Genomic Epidemiological Evaluation of Human Campylobacter Isolates by Use of Whole-Genome Multilocus Sequence Typing. Journal of Clinical Microbiology, 2013, 51, 2526-2534.	3.9	124
185	Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17522-17527.	7.1	124
186	Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nature Communications, 2015, 6, 6740.	12.8	124
187	Clobal and regional dissemination and evolution of Burkholderia pseudomallei. Nature Microbiology, 2017, 2, 16263.	13.3	124
188	Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nature Genetics, 2019, 51, 1035-1043.	21.4	120
189	Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 396, 190-190.	27.8	119
190	Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain. BMC Genomics, 2009, 10, 239.	2.8	119
191	Wheat bran promotes enrichment within the human colonic microbiota of butyrateâ€producing bacteria that release ferulic acid. Environmental Microbiology, 2016, 18, 2214-2225.	3.8	119
192	Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus. Genome Biology, 2012, 13, R126.	9.6	118
193	Signatures of Adaptation in Human Invasive Salmonella Typhimurium ST313 Populations from Sub-Saharan Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003611.	3.0	116
194	Whole-genome sequences of <i>Chlamydia trachomatis</i> directly from clinical samples without culture. Genome Research, 2013, 23, 855-866.	5.5	115
195	Identification of Antigen-Specific B Cell Receptor Sequences Using Public Repertoire Analysis. Journal of Immunology, 2015, 194, 252-261.	0.8	115
196	Emergence of a Globally Dominant IncHI1 Plasmid Type Associated with Multiple Drug Resistant Typhoid. PLoS Neglected Tropical Diseases, 2011, 5, e1245.	3.0	114
197	A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: Convergence or divergence by homologous recombination?. Genome Research, 2006, 17, 61-68.	5.5	112
198	Complete Genome Sequence of the Plant Pathogen <i>Erwinia amylovora</i> Strain ATCC 49946. Journal of Bacteriology, 2010, 192, 2020-2021.	2.2	112

#	Article	IF	CITATIONS
199	Evidence for Soft Selective Sweeps in the Evolution of Pneumococcal Multidrug Resistance and Vaccine Escape. Genome Biology and Evolution, 2014, 6, 1589-1602.	2.5	112
200	The Role of Prophage-like Elements in the Diversity of Salmonella enterica Serovars. Journal of Molecular Biology, 2004, 339, 279-300.	4.2	111
201	Genome sequencing defines phylogeny and spread of methicillin-resistant <i>Staphylococcus aureus</i> in a high transmission setting. Genome Research, 2015, 25, 111-118.	5.5	111
202	A non-endoscopic device to sample the oesophageal microbiota: a case-control study. The Lancet Gastroenterology and Hepatology, 2017, 2, 32-42.	8.1	111
203	New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology (United Kingdom), 1999, 145, 881-892.	1.8	108
204	SCP1, a 356 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Molecular Microbiology, 2004, 51, 1615-1628.	2.5	108
205	A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Research, 2013, 41, 4549-4564.	14.5	108
206	Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome, 2018, 6, 36.	11.1	107
207	Staphylococcus aureus Adapts to Oxidative Stress by Producing H ₂ O ₂ -Resistant Small-Colony Variants via the SOS Response. Infection and Immunity, 2015, 83, 1830-1844.	2.2	106
208	Comprehensive global genome dynamics of <i>Chlamydia trachomatis</i> show ancient diversification followed by contemporary mixing and recent lineage expansion. Genome Research, 2017, 27, 1220-1229.	5.5	106
209	Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infectious Diseases, The, 2019, 19, 1209-1218.	9.1	106
210	Diversification of Colonization Factors in a Multidrug-Resistant Escherichia coli Lineage Evolving under Negative Frequency-Dependent Selection. MBio, 2019, 10, .	4.1	106
211	Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nature Microbiology, 2019, 4, 996-1005.	13.3	106
212	The Impact of Recombination on dN/dS within Recently Emerged Bacterial Clones. PLoS Pathogens, 2011, 7, e1002129.	4.7	105
213	A pilot study of rapid whole-genome sequencing for the investigation of a <i>Legionella</i> outbreak. BMJ Open, 2013, 3, e002175.	1.9	105
214	Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nature Communications, 2015, 6, 6560.	12.8	105
215	Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Science Translational Medicine, 2017, 9, .	12.4	103
216	Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genomics, 2009, 10, 54.	2.8	101

#	Article	IF	CITATIONS
217	Distribution of Tetracycline and Erythromycin Resistance Genes Among Human Oral and Fecal Metagenomic DNA. Microbial Drug Resistance, 2009, 15, 159-166.	2.0	101
218	Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three Salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. Nucleic Acids Research, 2000, 28, 4974-4986.	14.5	100
219	Novel <i>Mycobacterium tuberculosis</i> Complex Isolate from a Wild Chimpanzee. Emerging Infectious Diseases, 2013, 19, 969-976.	4.3	100
220	Comparative cell wall core biosynthesis in the mycolated pathogens, <i>Mycobacterium tuberculosis</i> and <i>Corynebacterium diphtheriae</i> . FEMS Microbiology Reviews, 2004, 28, 225-250.	8.6	99
221	Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement. BMC Genomics, 2009, 10, 584.	2.8	99
222	The Bacteriology of Pouchitis. Annals of Surgery, 2010, 252, 90-98.	4.2	99
223	Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics, 2012, 13, 545.	2.8	99
224	A High-Resolution View of Genome-Wide Pneumococcal Transformation. PLoS Pathogens, 2012, 8, e1002745.	4.7	98
225	High-Resolution Single Nucleotide Polymorphism Analysis Distinguishes Recrudescence and Reinfection in Recurrent Invasive Nontyphoidal Salmonella Typhimurium Disease. Clinical Infectious Diseases, 2012, 54, 955-963.	5.8	98
226	Fighting Obesity with Bacteria. Science, 2013, 341, 1069-1070.	12.6	98
227	Mutations Revealed by Sequencing the 5' Half of the Gene for Ataxia Telangiectasia. Human Molecular Genetics, 1996, 5, 145-149.	2.9	97
228	Intra- and Interhost Evolutionary Dynamics of Equine Influenza Virus. Journal of Virology, 2010, 84, 6943-6954.	3.4	97
229	Evolution and Epidemiology of Multidrug-Resistant <i>Klebsiella pneumoniae</i> in the United Kingdom and Ireland. MBio, 2017, 8, .	4.1	97
230	Arginine-deprivation–induced oxidative damage sterilizes <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9779-9784.	7.1	97
231	Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among <i>Klebsiella pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25043-25054.	7.1	97
232	The Bordetellae: lessons from genomics. Nature Reviews Microbiology, 2004, 2, 379-390.	28.6	96
233	Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics, 2009, 10, 302.	2.8	96
234	A decade of genomic history for healthcare-associated <i>Enterococcus faecium</i> in the United Kingdom and Ireland. Genome Research, 2016, 26, 1388-1396.	5.5	96

#	Article	IF	CITATIONS
235	A Shared Population of Epidemic Methicillin-Resistant Staphylococcus aureus 15 Circulates in Humans and Companion Animals. MBio, 2014, 5, e00985-13.	4.1	95
236	The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genomics, 2016, 17, 222.	2.8	95
237	Genome-wide identification of lineage and locus specific variation associated with pneumococcal carriage duration. ELife, 2017, 6, .	6.0	95
238	Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. ELife, 2015, 4, e07335.	6.0	94
239	Complex Routes of Nosocomial Vancomycin-Resistant Enterococcus faecium Transmission Revealed by Genome Sequencing. Clinical Infectious Diseases, 2017, 64, 886-893.	5.8	93
240	Respiratory microbiota resistance and resilience to pulmonary exacerbation and subsequent antimicrobial intervention. ISME Journal, 2016, 10, 1081-1091.	9.8	92
241	Evolution of the <i>Rhodococcus equi vap</i> Pathogenicity Island Seen through Comparison of Host-Associated <i>vapA</i> and <i>vapB</i> Virulence Plasmids. Journal of Bacteriology, 2008, 190, 5797-5805.	2.2	91
242	The impact of antimicrobials on gonococcal evolution. Nature Microbiology, 2019, 4, 1941-1950.	13.3	91
243	Stepwise pathogenic evolution of <i>Mycobacterium abscessus</i> . Science, 2021, 372, .	12.6	91
244	The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics, 2008, 9, 616.	2.8	90
245	Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC Genomics, 2010, 11, 627.	2.8	90
246	Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiology Letters, 2011, 322, 60-67.	1.8	90
247	Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy, 2015, 70, 2775-2778.	3.0	90
248	Molecular Analysis of incHI1 Antimicrobial Resistance Plasmids from Salmonella Serovar Typhi Strains Associated with Typhoid Fever. Antimicrobial Agents and Chemotherapy, 2003, 47, 2732-2739.	3.2	88
249	A simple method for directional transcriptome sequencing using Illumina technology. Nucleic Acids Research, 2009, 37, e148-e148.	14.5	88
250	Genomeâ€wide association of functional traits linked with <scp><i>C</i></scp> <i>ampylobacter jejuni</i> survival from farm to fork. Environmental Microbiology, 2017, 19, 361-380.	3.8	88
251	Genome of the Actinomycete Plant Pathogen <i>Clavibacter michiganensis</i> subsp. <i>sepedonicus</i> Suggests Recent Niche Adaptation. Journal of Bacteriology, 2008, 190, 2150-2160.	2.2	86
252	Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nature Microbiology, 2016, 1, .	13.3	86

#	Article	IF	CITATIONS
253	Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genetics, 2017, 13, e1006508.	3.5	85
254	Whole Genome Sequencing Shows a Low Proportion of Tuberculosis Disease Is Attributable to Known Close Contacts in Rural Malawi. PLoS ONE, 2015, 10, e0132840.	2.5	84
255	TLR Signaling Modulates Side Effects of Anticancer Therapy in the Small Intestine. Journal of Immunology, 2015, 194, 1983-1995.	0.8	83
256	What Is Resistance? Impact of Phenotypic versus Molecular Drug Resistance Testing on Therapy for Multi- and Extensively Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	83
257	Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nature Communications, 2019, 10, 2176.	12.8	83
258	Genomic and Genetic Analysis of Bordetella Bacteriophages Encoding Reverse Transcriptase-Mediated Tropism-Switching Cassettes. Journal of Bacteriology, 2004, 186, 1503-1517.	2.2	81
259	Dominant Role of Nucleotide Substitution in the Diversification of Serotype 3 Pneumococci over Decades and during a Single Infection. PLoS Genetics, 2013, 9, e1003868.	3.5	81
260	Multidrug-Resistant Salmonella enterica Serovar Paratyphi A Harbors IncHI1 Plasmids Similar to Those Found in Serovar Typhi. Journal of Bacteriology, 2007, 189, 4257-4264.	2.2	80
261	SpolPred: rapid and accurate prediction of <i>Mycobacterium tuberculosis</i> spoligotypes from short genomic sequences. Bioinformatics, 2012, 28, 2991-2993.	4.1	80
262	Rapid Whole-Genome Sequencing for Investigation of a Suspected Tuberculosis Outbreak. Journal of Clinical Microbiology, 2013, 51, 611-614.	3.9	80
263	Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. Journal of Antimicrobial Chemotherapy, 2014, 69, 594-597.	3.0	80
264	Development of a Multiplex PCR Assay for Rapid Molecular Serotyping of Haemophilus parasuis. Journal of Clinical Microbiology, 2015, 53, 3812-3821.	3.9	80
265	Genomics of Mycobacterium bovis. Tuberculosis, 2001, 81, 157-163.	1.9	79
266	Public Health Value of Next-Generation DNA Sequencing of Enterohemorrhagic Escherichia coli Isolates from an Outbreak. Journal of Clinical Microbiology, 2013, 51, 232-237.	3.9	79
267	PolyTB: A genomic variation map for Mycobacterium tuberculosis. Tuberculosis, 2014, 94, 346-354.	1.9	79
268	Genomic Analysis of Isolates From the United Kingdom 2012 Pertussis Outbreak Reveals That Vaccine Antigen Genes Are Unusually Fast Evolving. Journal of Infectious Diseases, 2015, 212, 294-301.	4.0	79
269	The Flag-2 Locus, an Ancestral Gene Cluster, Is Potentially Associated with a Novel Flagellar System from Escherichia coli. Journal of Bacteriology, 2005, 187, 1430-1440.	2.2	78
270	Selective and Genetic Constraints on Pneumococcal Serotype Switching. PLoS Genetics, 2015, 11, e1005095.	3.5	78

#	Article	IF	CITATIONS
271	The Capsule Regulatory Network of <i>Klebsiella pneumoniae</i> Defined by density-TraDISort. MBio, 2018, 9, .	4.1	78
272	Site-specific insertion and deletion mutants in themerpromoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Research, 1990, 18, 5157-5162.	14.5	77
273	Whole Genome Sequence Analysis of a Large Isoniazid-Resistant Tuberculosis Outbreak in London: A Retrospective Observational Study. PLoS Medicine, 2016, 13, e1002137.	8.4	77
274	Rapid Virulence Annotation (RVA): Identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15967-15972.	7.1	76
275	Variable alterations of the microbiota, without metabolic or immunological change, following faecal microbiota transplantation in patients with chronic pouchitis. Scientific Reports, 2015, 5, 12955.	3.3	76
276	Assessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines. Microbial Biotechnology, 2016, 9, 209-223.	4.2	76
277	Comparison of the Genome Sequence of the Poultry Pathogen Bordetella avium with Those of B. bronchiseptica , B. pertussis , and B. parapertussis Reveals Extensive Diversity in Surface Structures Associated with Host Interaction. Journal of Bacteriology, 2006, 188, 6002-6015.	2.2	75
278	Elucidating Emergence and Transmission of Multidrug-Resistant Tuberculosis in Treatment Experienced Patients by Whole Genome Sequencing. PLoS ONE, 2013, 8, e83012.	2.5	75
279	Variable recombination dynamics during the emergence, transmission and â€~disarming' of a multidrug-resistant pneumococcal clone. BMC Biology, 2014, 12, 49.	3.8	75
280	Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe, The, 2020, 1, e328-e335.	7.3	75
281	Homology between a human apoptosis specific protein and the product of APG5 , a gene involved in autophagy in yeast. FEBS Letters, 1998, 425, 391-395.	2.8	74
282	Recent independent emergence of multiple multidrug-resistant <i>Serratia marcescens</i> clones within the United Kingdom and Ireland. Genome Research, 2016, 26, 1101-1109.	5.5	74
283	Genetic Basis for Lipopolysaccharide O-Antigen Biosynthesis in Bordetellae. Infection and Immunity, 1999, 67, 3763-3767.	2.2	74
284	Complete Genome of Acute Rheumatic Fever-Associated Serotype M5 Streptococcus pyogenes Strain Manfredo. Journal of Bacteriology, 2007, 189, 1473-1477.	2.2	73
285	A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy, 2014, 69, 911-918.	3.0	73
286	Discovery and Biosynthesis of Gladiolin: A <i>Burkholderia gladioli</i> Antibiotic with Promising Activity against <i>Mycobacterium tuberculosis</i> . Journal of the American Chemical Society, 2017, 139, 7974-7981.	13.7	73
287	Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand. Genome Medicine, 2017, 9, 81.	8.2	73
288	Bacterial epidemiology and biology - lessons from genome sequencing. Genome Biology, 2011, 12, 230.	9.6	72

#	Article	IF	CITATIONS
289	Resolution of a Meningococcal Disease Outbreak from Whole-Genome Sequence Data with Rapid Web-Based Analysis Methods. Journal of Clinical Microbiology, 2012, 50, 3046-3053.	3.9	72
290	Defining the Estimated Core Genome of Bacterial Populations Using a Bayesian Decision Model. PLoS Computational Biology, 2014, 10, e1003788.	3.2	72
291	Multiple major disease-associated clones of <i>Legionella pneumophila</i> have emerged recently and independently. Genome Research, 2016, 26, 1555-1564.	5.5	72
292	Complete Nucleotide Sequence of the Conjugative Tetracycline Resistance Plasmid pFBAOT6, a Member of a Group of IncU Plasmids with Global Ubiquity. Applied and Environmental Microbiology, 2004, 70, 7497-7510.	3.1	71
293	Genetic flux over time in the Salmonella lineage. Genome Biology, 2007, 8, R100.	9.6	71
294	Interleukin 6 Increases Production of Cytokines by Colonic Innate Lymphoid Cells in Mice and Patients With Chronic Intestinal Inflammation. Gastroenterology, 2015, 149, 456-467.e15.	1.3	71
295	Phylogenomic exploration of the relationships between strains of Mycobacterium avium subspecies paratuberculosis. BMC Genomics, 2016, 17, 79.	2.8	71
296	Genome-Based Infection Tracking Reveals Dynamics of <i>Clostridium difficile</i> Transmission and Disease Recurrence. Clinical Infectious Diseases, 2016, 62, 746-752.	5.8	71
297	Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microbial Genomics, 2021, 7, .	2.0	71
298	Genome Analysis of an Inducible Prophage and Prophage Remnants Integrated in the Streptococcus pyogenes Strain SF370. Virology, 2002, 302, 245-258.	2.4	70
299	BamView: viewing mapped read alignment data in the context of the reference sequence. Bioinformatics, 2010, 26, 676-677.	4.1	70
300	Novel Determinants of Antibiotic Resistance: Identification of Mutated Loci in Highly Methicillin-Resistant Subpopulations of Methicillin-Resistant Staphylococcus aureus. MBio, 2014, 5, e01000.	4.1	70
301	Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics, 2016, 17, 767.	2.8	70
302	The Ecological Dynamics of Fecal Contamination and Salmonella Typhi and Salmonella Paratyphi A in Municipal Kathmandu Drinking Water. PLoS Neglected Tropical Diseases, 2016, 10, e0004346.	3.0	70
303	The Genome of Mycobacterium Africanum West African 2 Reveals a Lineage-Specific Locus and Genome Erosion Common to the M. tuberculosis Complex. PLoS Neglected Tropical Diseases, 2012, 6, e1552.	3.0	69
304	The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Scientific Reports, 2017, 7, 42483.	3.3	69
305	Apparent nosocomial adaptation of Enterococcus faecalis predates the modern hospital era. Nature Communications, 2021, 12, 1523.	12.8	69
306	A Common Genomic Framework for a Diverse Assembly of Plasmids in the Symbiotic Nitrogen Fixing Bacteria. PLoS ONE, 2008, 3, e2567.	2.5	69

#	Article	IF	CITATIONS
307	High-throughput bacterial SNP typing identifies distinct clusters of SalmonellaTyphi causing typhoid in Nepalese children. BMC Infectious Diseases, 2010, 10, 144.	2.9	68
308	A Comprehensive Survey of Single Nucleotide Polymorphisms (SNPs) across <i>Mycobacterium bovis</i> Strains and <i>M. bovis</i> BCG Vaccine Strains Refines the Genealogy and Defines a Minimal Set of SNPs That Separate Virulent <i>M. bovis</i> Strains and <i>M. bovis</i> BCG Strains. Infection and Immunity, 2009, 77, 2230-2238.	2.2	67
309	A Staphylococcus xylosus Isolate with a New <i>mecC</i> Allotype. Antimicrobial Agents and Chemotherapy, 2013, 57, 1524-1528.	3.2	67
310	Population genomic datasets describing the post-vaccine evolutionary epidemiology of Streptococcus pneumoniae. Scientific Data, 2015, 2, 150058.	5.3	67
311	Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. MSystems, 2020, 5, .	3.8	67
312	Prevalence and properties of mecC methicillin-resistant Staphylococcus aureus (MRSA) in bovine bulk tank milk in Great Britain. Journal of Antimicrobial Chemotherapy, 2014, 69, 598-602.	3.0	66
313	Improved Prediction of Bacterial Genotype-Phenotype Associations Using Interpretable Pangenome-Spanning Regressions. MBio, 2020, 11, .	4.1	66
314	Clobal phylogeography and evolutionary history of Shigella dysenteriae type 1. Nature Microbiology, 2016, 1, 16027.	13.3	65
315	Genome-based characterization of hospital-adapted Enterococcus faecalis lineages. Nature Microbiology, 2016, 1, .	13.3	65
316	A Novel Linear Plasmid Mediates Flagellar Variation in Salmonella Typhi. PLoS Pathogens, 2007, 3, e59.	4.7	64
317	The pCoo Plasmid of Enterotoxigenic Escherichia coli Is a Mosaic Cointegrate. Journal of Bacteriology, 2005, 187, 6509-6516.	2.2	63
318	Clobal Phylogenomic Analysis of Nonencapsulated <i>Streptococcus pneumoniae</i> Reveals a Deep-Branching Classic Lineage That Is Distinct from Multiple Sporadic Lineages. Genome Biology and Evolution, 2014, 6, 3281-3294.	2.5	63
319	Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study. Lancet Infectious Diseases, The, 2015, 15, 1420-1428.	9.1	63
320	Building a genomic framework for prospective MRSA surveillance in the United Kingdom and the Republic of Ireland. Genome Research, 2016, 26, 263-270.	5.5	63
321	Genomic Surveillance of Enterococcus faecium Reveals Limited Sharing of Strains and Resistance Genes between Livestock and Humans in the United Kingdom. MBio, 2018, 9, .	4.1	63
322	The multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success. Genome Biology, 2012, 13, R103.	9.6	62
323	Prevalence and characterization of human mecC methicillin-resistant Staphylococcus aureus isolates in England. Journal of Antimicrobial Chemotherapy, 2014, 69, 907-910.	3.0	62
324	A longitudinal study of the infant nasopharyngeal microbiota: The effects of age, illness and antibiotic use in a cohort of South East Asian children. PLoS Neglected Tropical Diseases, 2017, 11, e0005975.	3.0	62

#	Article	IF	CITATIONS
325	Construction and characterization of a mercury-independent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion EMBO Journal, 1993, 12, 413-421.	7.8	61
326	Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06. BMC Genomics, 2010, 11, 652.	2.8	61
327	<i>Burkholderia pseudomallei</i> sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Research, 2015, 25, 129-141.	5.5	61
328	Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae. Genome Medicine, 2017, 9, 6.	8.2	61
329	Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens. Microbiology (United Kingdom), 2018, 164, 1213-1219.	1.8	61
330	Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology (United Kingdom), 2010, 156, 3255-3269.	1.8	61
331	Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biology, 2007, 5, 39.	3.8	60
332	Resolving the structural features of genomic islands: A machine learning approach. Genome Research, 2008, 18, 331-342.	5.5	60
333	BamView: visualizing and interpretation of next-generation sequencing read alignments. Briefings in Bioinformatics, 2013, 14, 203-212.	6.5	60
334	Genomic perspectives on the evolution and spread of bacterial pathogens. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150488.	2.6	60
335	Genome specialization and decay of the strangles pathogen, <i>Streptococcus equi</i> , is driven by persistent infection. Genome Research, 2015, 25, 1360-1371.	5.5	60
336	Variation in the Effectors of the Type III Secretion System among Photorhabdus Species as Revealed by Genomic Analysis. Journal of Bacteriology, 2004, 186, 4376-4381.	2.2	58
337	Whole-genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Medicine, 2016, 8, 4.	8.2	58
338	Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Medicine, 2020, 12, 27.	8.2	58
339	Genome and Transcriptome Adaptation Accompanying Emergence of the Definitive Type 2 Host-Restricted Salmonella enterica Serovar Typhimurium Pathovar. MBio, 2013, 4, e00565-13.	4.1	57
340	Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics, 2018, 19, 613.	2.8	57
341	Bacterial resistances to mercury and copper. Journal of Cellular Biochemistry, 1991, 46, 106-114.	2.6	56
342	Yersinia pestis pFra Shows Biovar-Specific Differences and Recent Common Ancestry with a Salmonella enterica Serovar Typhi Plasmid. Journal of Bacteriology, 2001, 183, 2586-2594.	2.2	56

#	Article	IF	CITATIONS
343	A novel streptococcal integrative conjugative element involved in iron acquisition. Molecular Microbiology, 2008, 70, 1274-1292.	2.5	55
344	Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin treatment. BMC Genomics, 2016, 17, 440.	2.8	55
345	Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in <i>Mycobacterium abscessus</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	55
346	Use of Vitek 2 Antimicrobial Susceptibility Profile To Identify <i>mecC</i> in Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2013, 51, 2732-2734.	3.9	53
347	Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression inCampylobacter jejunistrain NCTC11168. Nucleic Acids Research, 2016, 44, 4581-4594.	14.5	53
348	Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis. Microbial Genomics, 2017, 3, e000103.	2.0	53
349	New Variant of Multidrug-Resistant <i>Salmonella enterica</i> Serovar Typhimurium Associated with Invasive Disease in Immunocompromised Patients in Vietnam. MBio, 2018, 9, .	4.1	53
350	Quantifying acquisition and transmission of Enterococcus faecium using genomic surveillance. Nature Microbiology, 2021, 6, 103-111.	13.3	53
351	Emergence of a New Epidemic Neisseria meningitidis Serogroup A Clone in the African Meningitis Belt: High-Resolution Picture of Genomic Changes That Mediate Immune Evasion. MBio, 2014, 5, e01974-14.	4.1	51
352	Genomic Analysis and Comparison of Two Gonorrhea Outbreaks. MBio, 2016, 7, .	4.1	51
353	Genomic Analysis of Salmonella enterica Serovar Typhimurium from Wild Passerines in England and Wales. Applied and Environmental Microbiology, 2016, 82, 6728-6735.	3.1	51
354	Sequence-based analysis of pQBR103; a representative of a unique, transfer-proficient mega plasmid resident in the microbial community of sugar beet. ISME Journal, 2007, 1, 331-340.	9.8	50
355	Comparative genome analysis of Wolbachia strain wAu. BMC Genomics, 2014, 15, 928.	2.8	50
356	Recombination in Streptococcus pneumoniae Lineages Increase with Carriage Duration and Size of the Polysaccharide Capsule. MBio, 2016, 7, .	4.1	50
357	Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent. MBio, 2019, 10, .	4.1	50
358	Agricultural intensification and the evolution of host specialism in the enteric pathogen <i>Campylobacter jejuni</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11018-11028.	7.1	50
359	Rapid single-colony whole-genome sequencing of bacterial pathogens. Journal of Antimicrobial Chemotherapy, 2014, 69, 1275-1281.	3.0	49
360	Genetic Characterisation of Malawian Pneumococci Prior to the Roll-Out of the PCV13 Vaccine Using a High-Throughput Whole Genome Sequencing Approach. PLoS ONE, 2012, 7, e44250.	2.5	49

#	Article	IF	CITATIONS
361	Identification, variation and transcription of pneumococcal repeat sequences. BMC Genomics, 2011, 12, 120.	2.8	48
362	Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals. Journal of Antimicrobial Chemotherapy, 2014, 69, 2920-2927.	3.0	48
363	Genome flexibility in Neisseria meningitidis. Vaccine, 2009, 27, B103-B111.	3.8	47
364	Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nature Microbiology, 2019, 4, 1680-1691.	13.3	47
365	Dissemination of Mycobacterium abscessus via global transmission networks. Nature Microbiology, 2021, 6, 1279-1288.	13.3	47
366	Evaluation of an Optimal Epidemiological Typing Scheme for Legionella pneumophila with Whole-Genome Sequence Data Using Validation Guidelines. Journal of Clinical Microbiology, 2016, 54, 2135-2148.	3.9	46
367	The Microevolution and Epidemiology of Staphylococcus aureus Colonization during Atopic Eczema Disease Flare. Journal of Investigative Dermatology, 2018, 138, 336-343.	0.7	46
368	A One Health Study of the Genetic Relatedness of Klebsiella pneumoniae and Their Mobile Elements in the East of England. Clinical Infectious Diseases, 2020, 70, 219-226.	5.8	46
369	Structure, Diversity, and Mobility of the Salmonella Pathogenicity Island 7 Family of Integrative and Conjugative Elements within Enterobacteriaceae. Journal of Bacteriology, 2012, 194, 1494-1504.	2.2	45
370	Fibrinogenâ€binding and plateletâ€aggregation activities of a <i>Lactobacillus salivarius</i> septicaemia isolate are mediated by a novel fibrinogenâ€binding protein. Molecular Microbiology, 2012, 85, 862-877.	2.5	45
371	Systematic Surveillance Detects Multiple Silent Introductions and Household Transmission of Methicillin-Resistant <i>Staphylococcus aureus</i> USA300 in the East of England. Journal of Infectious Diseases, 2016, 214, 447-453.	4.0	45
372	Whole-Genome Sequencing Confirms that Burkholderia pseudomallei Multilocus Sequence Types Common to Both Cambodia and Australia Are Due to Homoplasy. Journal of Clinical Microbiology, 2015, 53, 323-326.	3.9	44
373	Evolution of the <i>Staphylococcus argenteus</i> ST2250 Clone in Northeastern Thailand Is Linked with the Acquisition of Livestock-Associated Staphylococcal Genes. MBio, 2017, 8, .	4.1	44
374	Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in a long-term care facility in the United Kingdom. Genome Medicine, 2017, 9, 70.	8.2	44
375	Whole Genome Sequencing for Determining the Source of Mycobacterium bovis Infections in Livestock Herds and Wildlife in New Zealand. Frontiers in Veterinary Science, 2018, 5, 272.	2.2	44
376	Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates. Scientific Reports, 2018, 8, 11597.	3.3	44
377	Genomic Profiling Reveals Distinct Routes To Complement Resistance in Klebsiella pneumoniae. Infection and Immunity, 2020, 88, .	2.2	44
378	Replacement of Adenylate Cyclase Toxin in a Lineage of <i>Bordetella bronchiseptica</i> . Journal of Bacteriology, 2008, 190, 5502-5511.	2.2	43

#	Article	IF	CITATIONS
379	Sequence and Analysis of a Plasmid-Encoded Mercury Resistance Operon from <i>Mycobacterium marinum</i> Identifies MerH, a New Mercuric Ion Transporter. Journal of Bacteriology, 2009, 191, 439-444.	2.2	43
380	A small predatory core genome in the divergent marine <i>Bacteriovorax marinus</i> SJ and the terrestrial <i>Bdellovibrio bacteriovorus</i> . ISME Journal, 2013, 7, 148-160.	9.8	43
381	Time between Collection and Storage Significantly Influences Bacterial Sequence Composition in Sputum Samples from Cystic Fibrosis Respiratory Infections. Journal of Clinical Microbiology, 2014, 52, 3011-3016.	3.9	43
382	Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics, 2017, 18, 684.	2.8	43
383	Genomic diversity of Salmonella enterica -The UoWUCC 10K genomes project. Wellcome Open Research, 2020, 5, 223.	1.8	43
384	Emergence and dissemination of antimicrobial resistance in Escherichia coli causing bloodstream infections in Norway in 2002–17: a nationwide, longitudinal, microbial population genomic study. Lancet Microbe, The, 2021, 2, e331-e341.	7.3	43
385	Evaluation of phylogenetic reconstruction methods using bacterial whole genomes: a simulation based study. Wellcome Open Research, 2018, 3, 33.	1.8	42
386	Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides. BMC Microbiology, 2020, 20, 283.	3.3	41
387	Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genetics, 2017, 13, e1006855.	3.5	41
388	Detecting SNPs and estimating allele frequencies in clonal bacterial populations by sequencing pooled DNA. Bioinformatics, 2009, 25, 2074-2075.	4.1	40
389	Comparative genomics and proteomics of Helicobacter mustelae, an ulcerogenic and carcinogenic gastric pathogen. BMC Genomics, 2010, 11, 164.	2.8	40
390	Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics, 2013, 14, 500.	2.8	40
391	The Impact of NOD2 Variants on Fecal Microbiota in Crohn's Disease and Controls Without Gastrointestinal Disease. Inflammatory Bowel Diseases, 2018, 24, 583-592.	1.9	40
392	Detection of vancomycin-resistant <i>Enterococcus faecium</i> hospital-adapted lineages in municipal wastewater treatment plants indicates widespread distribution and release into the environment. Genome Research, 2019, 29, 626-634.	5.5	40
393	Unlocking the genome of the human typhoid bacillus. Lancet Infectious Diseases, The, 2002, 2, 163-170.	9.1	39
394	Investigations into genome diversity of Haemophilus influenzae using whole genome sequencing of clinical isolates and laboratory transformants. BMC Microbiology, 2012, 12, 273.	3.3	39
395	The Murray collection of pre-antibiotic era Enterobacteriacae: a unique research resource. Genome Medicine, 2015, 7, 97.	8.2	39
396	Emergent and evolving antimicrobial resistance cassettes in community-associated fusidic acid and meticillin-resistant Staphylococcus aureus. International Journal of Antimicrobial Agents, 2015, 45, 477-484.	2.5	39

#	Article	IF	CITATIONS
397	Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. Lancet Microbe, The, 2021, 2, e472-e480.	7.3	39
398	Transient Silencing of Antibiotic Resistance by Mutation Represents a Significant Potential Source of Unanticipated Therapeutic Failure. MBio, 2019, 10, .	4.1	39
399	Improved characterisation of MRSA transmission using within-host bacterial sequence diversity. ELife, 2019, 8, .	6.0	39
400	Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium. Microbiology (United) Tj ETQq0 0 0 rgBT	/ D øerlock	3 8 Tf 50 61
401	Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genomics, 2012, 13, 454.	2.8	38
402	Genomic diversity of Salmonella enterica -The UoWUCC 10K genomes project. Wellcome Open Research, 2020, 5, 223.	1.8	38
403	Single-cell genomics. Nature Reviews Microbiology, 2008, 6, 176-177.	28.6	37
404	Transcriptional Regulation of Culex pipiens Mosquitoes by Wolbachia Influences Cytoplasmic Incompatibility. PLoS Pathogens, 2013, 9, e1003647.	4.7	37
405	Gene Content and Diversity of the Loci Encoding Biosynthesis of Capsular Polysaccharides of the 15 Serovar Reference Strains of Haemophilus parasuis. Journal of Bacteriology, 2013, 195, 4264-4273.	2.2	37
406	Genomic Epidemiology of <i>Vibrio cholerae</i> O1 Associated with Floods, Pakistan, 2010. Emerging Infectious Diseases, 2014, 20, 13-20.	4.3	37
407	Characterisation and distribution of a cryptic Salmonella typhi plasmid pHCM2. Plasmid, 2002, 47, 159-171.	1.4	36
408	Generating whole bacterial genome sequences of low-abundance species from complex samples with IMS-MDA. Nature Protocols, 2013, 8, 2404-2412.	12.0	36
409	Seeding and Establishment of Legionella pneumophila in Hospitals: Implications for Genomic Investigations of Nosocomial Legionnaires' Disease. Clinical Infectious Diseases, 2017, 64, 1251-1259.	5.8	36
410	Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Research, 2019, 47, e112-e112.	14.5	36
411	Citrobacter rodentium is an Unstable Pathogen Showing Evidence of Significant Genomic Flux. PLoS Pathogens, 2011, 7, e1002018.	4.7	35
412	Population Structure of Multidrug-Resistant Klebsiella oxytoca within Hospitals across the United Kingdom and Ireland Identifies Sharing of Virulence and Resistance Genes with K. pneumoniae. Genome Biology and Evolution, 2017, 9, 574-584.	2.5	35
413	A novel Ancestral Beijing sublineage of Mycobacterium tuberculosis suggests the transition site to Modern Beijing sublineages. Scientific Reports, 2019, 9, 13718.	3.3	35
414	Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis. Journal of Antimicrobial Chemotherapy, 2019, 74, 561-570.	3.0	35

#	Article	IF	CITATIONS
415	Definition of a major p53 binding site on Ad2E1B58K protein and a possible nuclear localization signal on the Ad12E1B54K protein. Oncogene, 1999, 18, 955-965.	5.9	34
416	The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis. BMC Genomics, 2014, 15, 1179.	2.8	34
417	Comparative genomics of Mycobacterium africanum Lineage 5 and Lineage 6 from Ghana suggests distinct ecological niches. Scientific Reports, 2018, 8, 11269.	3.3	34
418	An unusual <i>Burkholderia gladioli</i> double chain-initiating nonribosomal peptide synthetase assembles †fungal' icosalide antibiotics. Chemical Science, 2019, 10, 5489-5494.	7.4	34
419	A global data-driven census of <i>Salmonella</i> small proteins and their potential functions in bacterial virulence. MicroLife, 2020, 1, .	2.1	34
420	Batch effects account for the main findings of an in utero human intestinal bacterial colonization study. Microbiome, 2021, 9, 6.	11.1	34
421	Pan-genomic perspective on the evolution of the Staphylococcus aureus USA300 epidemic. Microbial Genomics, 2016, 2, e000058.	2.0	34
422	Tyrosine site-specific recombinases mediate DNA inversions affecting the expression of outer surface proteins of Bacteroides fragilis. Molecular Microbiology, 2004, 53, 1319-1330.	2.5	33
423	A Study on the Geophylogeny of Clinical and Environmental Vibrio cholerae in Kenya. PLoS ONE, 2013, 8, e74829.	2.5	33
424	MRSA Transmission Dynamics Among Interconnected Acute, Intermediate-Term, and Long-Term Healthcare Facilities in Singapore. Clinical Infectious Diseases, 2017, 64, S76-S81.	5.8	33
425	Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microbial Genomics, 2017, 3, e000114.	2.0	33
426	The widespread use of topical antimicrobials enriches for resistance in <i>Staphylococcus aureus</i> isolated from patients with atopic dermatitis. British Journal of Dermatology, 2018, 179, 951-958.	1.5	33
427	Genome-wide mutational biases fuel transcriptional diversity in the Mycobacterium tuberculosis complex. Nature Communications, 2019, 10, 3994.	12.8	33
428	Molecular epidemiology and expression of capsular polysaccharides in Staphylococcus aureus clinical isolates in the United States. PLoS ONE, 2019, 14, e0208356.	2.5	33
429	Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology. Microbial Genomics, 2016, 2, e000085.	2.0	33
430	Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microbial Genomics, 2020, 6, .	2.0	33
431	Identification of DNA Markers for a TransmissiblePseudomonas aeruginosaCystic Fibrosis Strain. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 56-64.	2.9	32
432	Old Drugs To Treat Resistant Bugs: Methicillin-Resistant Staphylococcus aureus Isolates with <i>mecC</i> Are Susceptible to a Combination of Penicillin and Clavulanic Acid. Antimicrobial Agents and Chemotherapy, 2015, 59, 7396-7404.	3.2	32

#	Article	IF	CITATIONS
433	Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis. BMC Genomics, 2015, 16, 447.	2.8	32
434	Identification and Characterization of Genetic Determinants of Isoniazid and Rifampicin Resistance in Mycobacterium tuberculosis in Southern India. Scientific Reports, 2019, 9, 10283.	3.3	32
435	Engineering bacteriocinâ€mediated resistance against the plant pathogen <i>Pseudomonas syringae</i> . Plant Biotechnology Journal, 2020, 18, 1296-1306.	8.3	32
436	Genomic Epidemiology of <i>Vibrio cholerae</i> O1 Associated with Floods, Pakistan, 2010. Emerging Infectious Diseases, 2014, 20, 13-20.	4.3	31
437	Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution. Nucleic Acids Research, 2018, 46, 11466-11476.	14.5	31
438	Microevolution of Burkholderia pseudomallei during an Acute Infection. Journal of Clinical Microbiology, 2014, 52, 3418-3421.	3.9	30
439	Mycobacterium abscessus Complex Identification with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 2015, 53, 2355-2358.	3.9	30
440	Transmission of methicillin-resistant Staphylococcus aureus in long-term care facilities and their related healthcare networks. Genome Medicine, 2016, 8, 102.	8.2	30
441	Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex. Journal of Bacteriology, 2017, 199, .	2.2	30
442	Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nature Microbiology, 2021, 6, 1199-1210.	13.3	30
443	Clinical and laboratory-induced colistin-resistance mechanisms in Acinetobacter baumannii. Microbial Genomics, 2019, 5, .	2.0	30
444	Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Global Health, 2020, 5, e003622.	4.7	30
445	Microbiota That Affect Risk for Shigellosis in Children in Low-Income Countries. Emerging Infectious Diseases, 2015, 21, 242-250.	4.3	30
446	Gut microbiomes from Gambian infants reveal the development of a non-industrialized Prevotella-based trophic network. Nature Microbiology, 2022, 7, 132-144.	13.3	30
447	In-depth genetic analysis of <i>Clostridiumdifficile</i> PCR-ribotype 027 strains reveals high genome fluidity including point mutations and inversions. Gut Microbes, 2010, 1, 269-276.	9.8	29
448	Implications of multiple freeze-thawing on respiratory samples for culture-independent analyses. Journal of Cystic Fibrosis, 2015, 14, 464-467.	0.7	29
449	What's in a Name? Species-Wide Whole-Genome Sequencing Resolves Invasive and Noninvasive Lineages of Salmonella enterica Serotype Paratyphi B. MBio, 2016, 7, .	4.1	29
450	Some Synonymous and Nonsynonymous <i>gyrA</i> Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDR <i>sl</i> Assays. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	29

#	Article	IF	CITATIONS
451	Global Scale Dissemination of ST93: A Divergent Staphylococcus aureus Epidemic Lineage That Has Recently Emerged From Remote Northern Australia. Frontiers in Microbiology, 2018, 9, 1453.	3.5	29
452	Genomic characterization of novel Neisseria species. Scientific Reports, 2019, 9, 13742.	3.3	29
453	A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nature Chemistry, 2019, 11, 906-912.	13.6	29
454	Fetal inheritance of chromosomally integrated human herpesvirus 6 predisposes the mother to pre-eclampsia. Nature Microbiology, 2020, 5, 901-908.	13.3	29
455	Genomic surveillance of Escherichia coli in municipal wastewater treatment plants as an indicator of clinically relevant pathogens and their resistance genes. Microbial Genomics, 2019, 5, .	2.0	29
456	Whole-genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar. Journal of Global Antimicrobial Resistance, 2016, 6, 113-117.	2.2	28
457	Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. FEMS Microbiology Ecology, 2019, 95, .	2.7	28
458	Incidence and Characterisation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal Colonisation in Participants Attending a Cattle Veterinary Conference in the UK. PLoS ONE, 2013, 8, e68463.	2.5	28
459	The extant World War 1 dysentery bacillus NCTC1: a genomic analysis. Lancet, The, 2014, 384, 1691-1697.	13.7	27
460	Zero tolerance for healthcare-associated MRSA bacteraemia: is it realistic?. Journal of Antimicrobial Chemotherapy, 2014, 69, 2238-2245.	3.0	27
461	Whole genome investigation of a divergent clade of the pathogen Streptococcus suis. Frontiers in Microbiology, 2015, 6, 1191.	3.5	27
462	Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii. MBio, 2016, 7, .	4.1	27
463	Chemokine (C-C Motif) Receptor 2 Mediates Dendritic CellÂRecruitment to the Human Colon but Is Not ResponsibleÂforÂDifferences Observed in Dendritic CellÂSubsets,ÂPhenotype, and Function Between the ProximalÂandÂDistal Colon. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 22-39.e5.	4.5	27
464	The Influence of HIV on the Evolution of Mycobacterium tuberculosis. Molecular Biology and Evolution, 2017, 34, 1654-1668.	8.9	27
465	Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts. MSphere, 2019, 4, .	2.9	27
466	Identifying virulence determinants of multidrug-resistant <i>Klebsiella pneumoniae</i> in <i>Galleria mellonella</i> . Pathogens and Disease, 2021, 79, .	2.0	27
467	Read and assembly metrics inconsequential for clinical utility of whole-genome sequencing in mapping outbreaks. Nature Biotechnology, 2013, 31, 592-594.	17.5	26
468	Locally Confined Clonal Complexes of Mycobacterium ulcerans in Two Buruli Ulcer Endemic Regions of Cameroon. PLoS Neglected Tropical Diseases, 2015, 9, e0003802.	3.0	26

#	Article	IF	CITATIONS
469	Community outbreaks of group A Streptococcus revealed by genome sequencing. Scientific Reports, 2017, 7, 8554.	3.3	26
470	Within-host evolution of Enterococcus faecium during longitudinal carriage and transition to bloodstream infection in immunocompromised patients. Genome Medicine, 2017, 9, 119.	8.2	26
471	Complete Genome Sequence of Pseudomonas aeruginosa Reference Strain PAK. Microbiology Resource Announcements, 2019, 8, .	0.6	26
472	Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biology, 2021, 19, 191.	3.8	26
473	Domestication of Campylobacter jejuni NCTC 11168. Microbial Genomics, 2019, 5, .	2.0	26
474	Survey of Culture, GoldenGate Assay, Universal Biosensor Assay, and 16S rRNA Gene Sequencing as Alternative Methods of Bacterial Pathogen Detection. Journal of Clinical Microbiology, 2013, 51, 3263-3269.	3.9	25
475	Expression of Cellulosome Components and Type IV Pili within the Extracellular Proteome of Ruminococcus flavefaciens 007. PLoS ONE, 2013, 8, e65333.	2.5	25
476	Genomic variations leading to alterations in cell morphology of Campylobacter spp. Scientific Reports, 2016, 6, 38303.	3.3	25
477	Genomic surveillance reveals low prevalence of livestock-associated methicillin-resistant Staphylococcus aureus in the East of England. Scientific Reports, 2017, 7, 7406.	3.3	25
478	Defining the ABC of gene essentiality in streptococci. BMC Genomics, 2017, 18, 426.	2.8	25
479	Increasing incidence of group B streptococcus neonatal infections in the Netherlands is associated with clonal expansion of CC17 and CC23. Scientific Reports, 2020, 10, 9539.	3.3	25
480	Detection of livestock-associated meticillin-resistant Staphylococcus aureus CC398 in retail pork, United Kingdom, February 2015. Eurosurveillance, 2015, 20, .	7.0	25
481	Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus. BMC Genomics, 2015, 16, 388.	2.8	24
482	The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland. Nature Microbiology, 2016, 1, 16173.	13.3	24
483	Role of Alanine Racemase Mutations in Mycobacterium tuberculosis <scp>d</scp> -Cycloserine Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
484	Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System. MBio, 2018, 9, .	4.1	24
485	O-Antigen-Dependent Colicin Insensitivity of Uropathogenic Escherichia coli. Journal of Bacteriology, 2019, 201, .	2.2	24
486	Kill and cure: genomic phylogeny and bioactivity of Burkholderia gladioli bacteria capable of pathogenic and beneficial lifestyles. Microbial Genomics, 2021, 7, .	2.0	24

#	Article	IF	CITATIONS
487	Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome. Infection and Immunity, 2015, 83, 4165-4173.	2.2	23
488	Travel- and Community-Based Transmission of Multidrug-ResistantShigellasonneiLineage among International Orthodox Jewish Communities. Emerging Infectious Diseases, 2016, 22, 1545-1553.	4.3	23
489	Transposon Insertion Sequencing Elucidates Novel Gene Involvement in Susceptibility and Resistance to Phages T4 and T7 in <i>Escherichia coli</i> O157. MBio, 2018, 9, .	4.1	23
490	Adenovirus type 12 early region 1B 54K protein significantly extends the life span of normal mammalian cells in culture. Journal of Virology, 1997, 71, 6629-6640.	3.4	23
491	Lineage-specific Virulence Determinants of <i>Haemophilus influenzae</i> Biogroup aegyptius. Emerging Infectious Diseases, 2012, 18, 449-457.	4.3	22
492	Understanding pneumococcal serotype 1 biology through population genomic analysis. BMC Infectious Diseases, 2016, 16, 649.	2.9	22
493	Limited Impact of Adolescent Meningococcal ACWY Vaccination on Neisseria meningitidis Serogroup W Carriage in University Students. Journal of Infectious Diseases, 2018, 217, 608-616.	4.0	22
494	The composition and functional protein subsystems of the human nasal microbiome in granulomatosis with polyangiitis: a pilot study. Microbiome, 2019, 7, 137.	11.1	22
495	Contrasting patterns of longitudinal population dynamics and antimicrobial resistance mechanisms in two priority bacterial pathogens over 7Âyears in a single center. Genome Biology, 2019, 20, 184.	8.8	22
496	Methodology for Whole-Genome Sequencing of Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates in a Routine Hospital Microbiology Laboratory. Journal of Clinical Microbiology, 2019, 57, .	3.9	22
497	Genomic epidemiology of a national outbreak of post-surgical Mycobacterium abscessus wound infections in Brazil. Microbial Genomics, 2017, 3, e000111.	2.0	22
498	Global spatial dynamics and vaccine-induced fitness changes of <i>Bordetella pertussis</i> . Science Translational Medicine, 2022, 14, eabn3253.	12.4	22
499	Detecting eukaryotic microbiota with single-cell sensitivity in human tissue. Microbiome, 2018, 6, 151.	11.1	21
500	Genome Sequence of the Zoonotic Pathogen <i>Chlamydophila psittaci</i> . Journal of Bacteriology, 2011, 193, 1282-1283.	2.2	20
501	Global Phylogeny of Shigella sonnei Strains from Limited Single Nucleotide Polymorphisms (SNPs) and Development of a Rapid and Cost-Effective SNP-Typing Scheme for Strain Identification by High-Resolution Melting Analysis. Journal of Clinical Microbiology, 2013, 51, 303-305.	3.9	20
502	<i>dfrA thyA</i> Double Deletion in <i>para</i> -Aminosalicylic Acid-Resistant Mycobacterium tuberculosis Beijing Strains. Antimicrobial Agents and Chemotherapy, 2016, 60, 3864-3867.	3.2	20
503	Genomic Dissection of an Icelandic Epidemic of Respiratory Disease in Horses and Associated Zoonotic Cases. MBio, 2017, 8, .	4.1	20
504	Morphological, genomic and transcriptomic responses of Klebsiella pneumoniae to the last-line antibiotic colistin. Scientific Reports, 2018, 8, 9868.	3.3	20

#	Article	IF	CITATIONS
505	Molecular epidemiology and whole genome sequencing analysis of clinical Mycobacterium bovis from Ghana. PLoS ONE, 2019, 14, e0209395.	2.5	20
506	Inferring Mycobacterium bovis transmission between cattle and badgers using isolates from the Randomised Badger Culling Trial. PLoS Pathogens, 2021, 17, e1010075.	4.7	20
507	Genomes beyond compare. Nature Reviews Microbiology, 2004, 2, 616-617.	28.6	19
508	Genomic information infrastructure after the deluge. Genome Biology, 2010, 11, 402.	9.6	19
509	Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microbial Genomics, 2018, 4, .	2.0	19
510	Genetic variation associated with infection and the environment in the accidental pathogen Burkholderia pseudomallei. Communications Biology, 2019, 2, 428.	4.4	19
511	Multi-Compartment Profiling of Bacterial and Host Metabolites Identifies Intestinal Dysbiosis and Its Functional Consequences in the Critically III Child. Critical Care Medicine, 2019, 47, e727-e734.	0.9	19
512	Population genetic structuring of methicillin-resistant Staphylococcus aureus clone EMRSA-15 within UK reflects patient referral patterns. Microbial Genomics, 2017, 3, e000113.	2.0	19
513	The Distribution and â€~In Vivo' Phase Variation Status of Haemoglobin Receptors in Invasive Meningococcal Serogroup B Disease: Genotypic and Phenotypic Analysis. PLoS ONE, 2013, 8, e76932.	2.5	19
514	Convergent evolution and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. PLoS ONE, 2017, 12, e0189838.	2.5	19
515	Prospective genomic surveillance of methicillin-resistant Staphylococcus aureus (MRSA) associated with bloodstream infection, England, 1 October 2012 to 30 September 2013. Eurosurveillance, 2019, 24, .	7.0	19
516	Construction and characterization of a mercury-independent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion. EMBO Journal, 1993, 12, 413-21.	7.8	19
517	Phenotypic and Genomic Analysis of Hypervirulent Human-associated Bordetella bronchiseptica. BMC Microbiology, 2012, 12, 167.	3.3	18
518	Mechanisms of β-lactam resistance of Streptococcus uberis isolated from bovine mastitis cases. Veterinary Microbiology, 2020, 242, 108592.	1.9	18
519	Staphylococcus pseudoxylosus sp. nov., isolated from bovine mastitis. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 2208-2213.	1.7	18
520	Evaluation of phylogenetic reconstruction methods using bacterial whole genomes: a simulation based study. Wellcome Open Research, 0, 3, 33.	1.8	18
521	'Going wrong with confidence': misleading sequence analyses of CiaB and ClpX. Molecular Microbiology, 1999, 34, 195-195.	2.5	17
522	Consequences of <i>whiB7</i> (<i>Rv3197A</i>) Mutations in Beijing Genotype Isolates of the Mycobacterium tuberculosis Complex. Antimicrobial Agents and Chemotherapy, 2013, 57, 3461-3461.	3.2	17

#	Article	IF	CITATIONS
523	An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities. Scientific Reports, 2021, 11, 10590.	3.3	17
524	A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa. Microbial Genomics, 2018, 4, .	2.0	17
525	Induction of bacterial mercury- and copper-responsive promoters: Functional differences between inducible systems and implications for their use in gene-fusions for in vivo metal biosensors. Journal of Industrial Microbiology, 1995, 14, 349-353.	0.9	16
526	What has high-throughput sequencing ever done for us?. Nature Reviews Microbiology, 2013, 11, 664-665.	28.6	16
527	'Candidatus Ornithobacterium hominis': insights gained from draft genomes obtained from nasopharyngeal swabs. Microbial Genomics, 2019, 5, .	2.0	16
528	A role for arthropods as vectors of multidrug-resistant Enterobacterales in surgical site infections from South Asia. Nature Microbiology, 2021, 6, 1259-1270.	13.3	16
529	Pathogenomics of non-pathogens. Nature Reviews Microbiology, 2004, 2, 91-91.	28.6	15
530	Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin. Antimicrobial Agents and Chemotherapy, 2016, 60, 5232-5237.	3.2	15
531	In defense of complete genomes. Nature Biotechnology, 2000, 18, 493-494.	17.5	14
532	Genome-Based Analysis of Enterococcus faecium Bacteremia Associated with Recurrent and Mixed-Strain Infection. Journal of Clinical Microbiology, 2018, 56, .	3.9	14
533	Genetic variation regulates the activation and specificity of Restriction-Modification systems in Neisseria gonorrhoeae. Scientific Reports, 2019, 9, 14685.	3.3	14
534	Selection and characterization of mercury- independent activation mutants of the Tn501 transcriptional regulator, MerR. Microbiology (United Kingdom), 1998, 144, 2855-2864.	1.8	14
535	High-resolution sweep metagenomics using fast probabilistic inference. Wellcome Open Research, 0, 5, 14.	1.8	14
536	First detection of livestock-associated meticillin-resistant Staphylococcus aureus CC398 in bulk tank milk in the United Kingdom, January to July 2012. Eurosurveillance, 2012, 17, .	7.0	14
537	Bacillary dysentery from World War 1 and NCTC1, the first bacterial isolate in the National Collection. Lancet, The, 2014, 384, 1720.	13.7	13
538	A highly conserved <i>mecC</i> -encoding SCC <i>mec</i> type XI in a bovine isolate of methicillin-resistant <i>Staphylococcus xylosus</i> . Journal of Antimicrobial Chemotherapy, 2018, 73, 3516-3518.	3.0	13
539	The speciation and hybridization history of the genus Salmonella. Microbial Genomics, 2019, 5, .	2.0	13
540	High-resolution sweep metagenomics using fast probabilistic inference. Wellcome Open Research, 2020, 5, 14.	1.8	13

#	Article	IF	CITATIONS
541	Identification and initial characterisation of a protein involved in Campylobacter jejuni cell shape. Microbial Pathogenesis, 2017, 104, 202-211.	2.9	12
542	Genomics of the Argentinian cholera epidemic elucidate the contrasting dynamics of epidemic and endemic Vibrio cholerae. Nature Communications, 2020, 11, 4918.	12.8	12
543	Streptococcus bovimastitidis sp. nov., isolated from a dairy cow with mastitis. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 21-27.	1.7	12
544	Staphylococcus caeli sp. nov., isolated from air sampling in an industrial rabbit holding. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 82-86.	1.7	12
545	Genomic Analysis of Companion Rabbit Staphylococcus aureus. PLoS ONE, 2016, 11, e0151458.	2.5	12
546	Relative pathogenic values. Nature, 2003, 423, 23-24.	27.8	11
547	Unusual features in organisation of capsular polysaccharide-related genes of C. jejuni strain X. Gene, 2013, 522, 37-45.	2.2	11
548	Complete Genome Sequence of Bordetella pertussis D420. Genome Announcements, 2015, 3, .	0.8	11
549	Complete Genome Sequence of Plesiomonas shigelloides Type Strain NCTC10360. Genome Announcements, 2016, 4, .	0.8	11
550	Rapid detection and evolutionary analysis of Legionella pneumophila serogroup 1 sequence type 47. Clinical Microbiology and Infection, 2017, 23, 264.e1-264.e9.	6.0	11
551	Investigation of a Cluster of Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Transmission in a Community Setting. Clinical Infectious Diseases, 2017, 65, 2069-2077.	5.8	11
552	A whole-genome screen identifies Salmonella enterica serovar Typhi genes involved in fluoroquinolone susceptibility. Journal of Antimicrobial Chemotherapy, 2020, 75, 2516-2525.	3.0	11
553	Cell Surface Remodeling of <i>Mycobacterium abscessus</i> under Cystic Fibrosis Airway Growth Conditions. ACS Infectious Diseases, 2020, 6, 2143-2154.	3.8	11
554	Pathogenomic analyses of Mycobacterium microti, an ESX-1-deleted member of the Mycobacterium tuberculosis complex causing disease in various hosts. Microbial Genomics, 2021, 7, .	2.0	11
555	Transmission of M abscessus in patients with cystic fibrosis – Authors' reply. Lancet, The, 2013, 382, 504.	13.7	10
556	Draft Genome Sequence of the Streptococcus pneumoniae Avery Strain A66. Genome Announcements, 2015, 3, .	0.8	10
557	Evaluation of a fully automated bioinformatics tool to predict antibiotic resistance from MRSA genomes. Journal of Antimicrobial Chemotherapy, 2020, 75, 1117-1122.	3.0	10
558	Co-evolutionary Signals Identify <i>Burkholderia pseudomallei</i> Survival Strategies in a Hostile Environment. Molecular Biology and Evolution, 2022, 39, .	8.9	10

#	Article	IF	CITATIONS
559	Mycobacterium tuberculosis Lineages Associated with Mutations and Drug Resistance in Isolates from India. Microbiology Spectrum, 2022, 10, e0159421.	3.0	10
560	The value of comparison. Nature Reviews Microbiology, 2003, 1, 11-12.	28.6	9
561	Cobalamin Synthesis in Yersinia enterocolitica 8081. Advances in Experimental Medicine and Biology, 2004, 529, 43-46.	1.6	9
562	CONTRIBUTIONS OF THE GENOME SEQUENCE OF ERWINIA AMYLOVORA TO THE FIRE BLIGHT COMMUNITY. Acta Horticulturae, 2008, , 163-170.	0.2	9
563	Pilot Evaluation of a Fully Automated Bioinformatics System for Analysis of Methicillin-Resistant Staphylococcus aureus Genomes and Detection of Outbreaks. Journal of Clinical Microbiology, 2019, 57, .	3.9	9
564	Genomic Assemblies of Members of <i>Burkholderia</i> and Related Genera as a Resource for Natural Product Discovery. Microbiology Resource Announcements, 2020, 9, .	0.6	9
565	Globetrotting strangles: the unbridled national and international transmission of Streptococcus equi between horses. Microbial Genomics, 2021, 7, .	2.0	9
566	Population structure and transmission of Mycobacterium bovis in Ethiopia. Microbial Genomics, 2021, 7, .	2.0	9
567	Mycobacterium tuberculosis complex lineage 5 exhibits high levels of within-lineage genomic diversity and differing gene content compared to the type strain H37Rv. Microbial Genomics, 2021, 7, .	2.0	9
568	Evolutionary Strategies of Human Pathogens. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 151-158.	1.1	9
569	The importance of complete genome sequences. Trends in Microbiology, 2002, 10, 219-220.	7.7	8
570	Integration of tools and resources for display and analysis of genomic data for protozoan parasites. International Journal for Parasitology, 2005, 35, 481-493.	3.1	8
571	Pathogenomics: An updated European Research Agenda. Infection, Genetics and Evolution, 2008, 8, 386-393.	2.3	8
572	Comment on: Characterization of the embB gene in Mycobacterium tuberculosis isolates from Barcelona and rapid detection of main mutations related to ethambutol resistance using a low-density DNA array. Journal of Antimicrobial Chemotherapy, 2014, 69, 2298-2299.	3.0	8
573	Rapid sequencing of MRSA direct from clinical plates in a routine microbiology laboratory. Journal of Antimicrobial Chemotherapy, 2019, 74, 2153-2156.	3.0	8
574	Nasal carriage of <i>Staphylococcus pseudintermedius</i> in patients with granulomatosis with polyangiitis. Rheumatology, 2019, 58, 548-550.	1.9	8
575	A Novel Inducible Prophage from Burkholderia vietnamiensis G4 Is Widely Distributed across the Species and Has Lytic Activity against Pathogenic Burkholderia. Viruses, 2020, 12, 601.	3.3	8
576	Association between bacterial homoplastic variants and radiological pathology in tuberculosis. Thorax, 2020, 75, 584-591.	5.6	8

#	Article	IF	CITATIONS
577	Genome Sequencing of a Historic Staphylococcus aureus Collection Reveals New Enterotoxin Genes and Sheds Light on the Evolution and Genomic Organization of This Key Virulence Gene Family. Journal of Bacteriology, 2021, 203, .	2.2	8
578	Emergence and genomic diversification of a virulent serogroup W:ST-2881(CC175) Neisseria meningitidis clone in the African meningitis belt. Microbial Genomics, 2017, 3, e000120.	2.0	8
579	Fundamental differences in physiology of Bordetella pertussis dependent on the two-component system Bvg revealed by gene essentiality studies. Microbial Genomics, 2020, 6, .	2.0	8
580	Draft Genome Sequence of 24570, the Type Strain of Shigella flexneri. Genome Announcements, 2015, 3, .	0.8	7
581	Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana. PLoS Neglected Tropical Diseases, 2016, 10, e0004856.	3.0	7
582	Comparative genomics of Czech vaccine strains of Bordetella pertussis. Pathogens and Disease, 2018, 76, .	2.0	7
583	A mecC allotype, mecC3, in the CoNS Staphylococcus caeli, encoded within a variant SCCmecC. Journal of Antimicrobial Chemotherapy, 2019, 74, 547-552.	3.0	7
584	Genomic and temporal analyses of Mycobacterium bovis in southern Brazil. Microbial Genomics, 2021, 7, .	2.0	7
585	Antimicrobial Resistance Exchange Between Humans and Animals: Why We Need to Know More. Engineering, 2022, 15, 11-12.	6.7	7
586	Fitting the niche by genomic adaptation. Nature Reviews Microbiology, 2003, 1, 92-93.	28.6	6
587	The hospital microbiome project: meeting report for the UK science and innovation network UK-USA workshop †beating the superbugs: hospital microbiome studies for tackling antimicrobial resistance', October 14th 2013. Standards in Genomic Sciences, 2014, 9, .	1.5	6
588	Separating Bacteria by Capsule Amount Using a Discontinuous Density Gradient. Journal of Visualized Experiments, 2019, , .	0.3	6
589	Spatial structuring of a Legionella pneumophila population within the water system of a large occupational building. Microbial Genomics, 2018, 4, .	2.0	6
590	Screening for Highly Transduced Genes in Staphylococcus aureus Revealed Both Lateral and Specialized Transduction. Microbiology Spectrum, 2022, 10, e0242321.	3.0	6
591	Genomic Insights Into the Mechanism of Carbapenem Resistance Dissemination in Enterobacterales From a Tertiary Public Heath Setting in South Asia. Clinical Infectious Diseases, 2023, 76, 119-133.	5.8	6
592	Annotation of microbial genomes. Methods in Microbiology, 2002, 33, 3-26.	0.8	5
593	The use of genome annotation data and its impact on biological conclusions. Nature Genetics, 2004, 36, 1028-1029.	21.4	5
594	Pathogens in decay. Nature Reviews Microbiology, 2004, 2, 774-775.	28.6	5

#	Article	IF	CITATIONS
595	Comparative Apicomplexan genomics. Nature Reviews Microbiology, 2005, 3, 454-455.	28.6	5
596	Within-Host Sampling of a Natural Population Shows Signs of Selection on Pde1 during Bacterial Meningitis. Infection and Immunity, 2017, 85, .	2.2	5
597	Low genomic diversity of Legionella pneumophila within clinical specimens. Clinical Microbiology and Infection, 2018, 24, 1020.e1-1020.e4.	6.0	5
598	Are commercial providers a viable option for clinical bacterial sequencing?. Microbial Genomics, 2018, 4, .	2.0	5
599	Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC): Supporting the transition from strategy to action. Wellcome Open Research, 2018, 3, 59.	1.8	5
600	Travel- and Community-Based Transmission of Multidrug-ResistantShigellasonneiLineage among International Orthodox Jewish Communities. Emerging Infectious Diseases, 2016, 22, 1545-1553.	4.3	5
601	Bacterial genotypic and patient risk factors for adverse outcomes in <i>Escherichia coli</i> bloodstream infections: a prospective molecular epidemiological study. Journal of Antimicrobial Chemotherapy, 2022, 77, 1753-1761.	3.0	5
602	Profiling gut microbiota and bile acid metabolism in critically ill children. Scientific Reports, 2022, 12,	3.3	5
603	Restricting genome data won't stop bioterrorism. Nature, 2002, 417, 379-379.	27.8	4
604	Pathogenomics. Nature Reviews Microbiology, 2003, 1, 176-177.	28.6	4
605	Population genomics: modeling the new and a renaissance of the old. Current Opinion in Microbiology, 2008, 11, 439-441.	5.1	4
606	Time to remove the model organism blinkers. Trends in Microbiology, 2008, 16, 510-511.	7.7	4
607	The First population structure and comparative genomics analysis of Mycobacterium africanum strains from Ghana reveals higher diversity of Lineage 5. International Journal of Mycobacteriology, 2016, 5, S80-S81.	0.6	4
608	Draft genome sequence of a multidrug-resistant caprine isolate of Staphylococcus cohnii subsp. urealyticus from Tanzania encoding ermB, tet(K), dfrG, fusF and fosD. Journal of Global Antimicrobial Resistance, 2019, 18, 163-165.	2.2	4
609	Whole-Genome Sequences of Five Strains of Kocuria rosea, NCTC2676, NCTC7514, NCTC7512, NCTC7528, and NCTC7511. Microbiology Resource Announcements, 2019, 8, .	0.6	4
610	Defining metrics for whole-genome sequence analysis of MRSA in clinical practice. Microbial Genomics, 2020, 6, .	2.0	4
611	PowerBacGWAS: a computational pipeline to perform power calculations for bacterial genome-wide association studies. Communications Biology, 2022, 5, 266.	4.4	4
612	Lost and found. Trends in Microbiology, 2001, 9, 526-527.	7.7	3

1

#	Article	IF	CITATIONS
613	Dynamic duos. Trends in Microbiology, 2001, 9, 579.	7.7	3
614	The devil is in the detail. Trends in Microbiology, 2003, 11, 256-258.	7.7	3
615	The Genome Sequences of Three <i>Paraburkholderia</i> sp. Strains Isolated from Wood-Decay Fungi Reveal Them as Novel Species with Antimicrobial Biosynthetic Potential. Microbiology Resource Announcements, 2019, 8, .	0.6	3
616	Increased Virulence of Outer Membrane Porin Mutants of Mycobacterium abscessus. Frontiers in Microbiology, 2021, 12, 706207.	3.5	3
617	Conservation of vaccine antigen sequences encoded by sequenced strains of <i>Streptococcus equi</i> subsp. <i>equi</i> . Equine Veterinary Journal, 2023, 55, 92-101.	1.7	3
618	Tales of the unexpected. Trends in Microbiology, 2002, 10, 261-262.	7.7	2
619	Genome giants. Trends in Microbiology, 2002, 10, 309-310.	7.7	2
620	The magnificent seven. Trends in Microbiology, 2003, 11, 12-14.	7.7	2
621	Shrinking genomics. Nature Reviews Microbiology, 2004, 2, 11-11.	28.6	2
622	Brothers in arms. Nature Reviews Microbiology, 2005, 3, 100-101.	28.6	2
623	PWE-082â€The Impact Of Nod2 Variants On Gut Microbiota In Crohn's Disease And Healthy Controls. Gut, 2014, 63, A159.2-A160.	12.1	2
624	Loss of Genomic Diversity in a Neisseria meningitidis Clone Through a Colonization Bottleneck. Genome Biology and Evolution, 2018, 10, 2102-2109.	2.5	2
625	Complete Whole-Genome Sequences of Two Raoultella terrigena Strains, NCTC 13097 and NCTC 13098, Isolated from Human Cases. Microbiology Resource Announcements, 2019, 8, .	0.6	2
626	Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC): Supporting the transition from strategy to action. Wellcome Open Research, 0, 3, 59.	1.8	2
627	Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal Salmonella from animals and humans in Vietnam. Microbial Genomics, 2022, 8, .	2.0	2
628	Size matters?. Trends in Microbiology, 2001, 9, 359.	7.7	1
629	The Full Monty. Trends in Microbiology, 2001, 9, 411-412.	7.7	1
(20)	Electropic Access to Musebacterium tuberculosis Sequence Data 2001 54 211 214		1

630 Electronic Access to Mycobacterium tuberculosis Sequence Data. , 2001, 54, 311-314.

#	Article	IF	CITATIONS
631	Sibling rivalry. Trends in Microbiology, 2002, 10, 396-397.	7.7	1
632	Armed to the teeth. Trends in Microbiology, 2002, 10, 163-164.	7.7	1
633	The building blocks of pathogenicity. Trends in Microbiology, 2003, 11, 66-67.	7.7	1
634	All walks of life. Trends in Microbiology, 2003, 11, 159-160.	7.7	1
635	The good, the bad and the ugly?. Trends in Microbiology, 2003, 11, 204-205.	7.7	1
636	A bad combination. Trends in Microbiology, 2003, 11, 297-299.	7.7	1
637	Eukaryotes: not beyond compare. Nature Reviews Microbiology, 2004, 2, 856-857.	28.6	1
638	Sequencing the environment. Nature Reviews Microbiology, 2004, 2, 184-185.	28.6	1
639	Bacterial minimalism. Nature Reviews Microbiology, 2004, 2, 274-275.	28.6	1
640	Strength in diversity. Nature Reviews Microbiology, 2004, 2, 358-359.	28.6	1
641	Correction for Waterfield <i>et al.</i> , Rapid Virulence Annotation (RVA): Identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2083-2083.	7.1	1
642	O03.4â€Genomic Epidemiology of Neisseria Gonorrhoeae with Reduced Susceptibility to Cefixime in the United States. Sexually Transmitted Infections, 2013, 89, A31.2-A31.	1.9	1
643	Invasive Salmonella typhimurium populations from Sub-Saharan Africa: Transmission and adaptation dynamics. International Journal of Infectious Diseases, 2014, 21, 342.	3.3	1
644	T4â€Global spread of mycobacterium abscessus clones amongst cystic fibrosis patient. Thorax, 2016, 71, A2.2-A2.	5.6	1
645	Draft Genome Sequence of a Multiresistant Bovine Isolate of Staphylococcus lentus from Tanzania. Genome Announcements, 2016, 4, .	0.8	1
646	PWE-069â€Sampling Oesophageal Microbial Communities in Barrett's Oesophagus Using Minimally Invasive and Endoscopic Methods. Gut, 2016, 65, A172.1-A172.	12.1	1
647	Complete Genome Sequence of Neisseria weaveri Strain NCTC13585. Genome Announcements, 2016, 4, .	0.8	1
648	Reply to Dookie et al., "Whole-Genome Sequencing To Guide the Selection of Treatment for Drug-Resistant Tuberculosis― Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	1

#	Article	IF	CITATIONS
649	Complete Whole-Genome Sequence of Haemophilus haemolyticus NCTC 10839. Microbiology Resource Announcements, 2019, 8, .	0.6	1
650	SpeS: A Novel Superantigen and Its Potential as a Vaccine Adjuvant against Strangles. International Journal of Molecular Sciences, 2020, 21, 4467.	4.1	1
651	An annotator's view. Microbiology (United Kingdom), 2001, 147, 2-2.	1.8	1
652	Bacterial Human Pathogen Genomes: an Overview. , 0, , 35-62.		1
653	Genome mining and characterisation of multiple bioactive compounds from a Burkholderia gladioli isolate collection. Planta Medica, 2016, 81, S1-S381.	1.3	1
654	Late Breaking Abstract - Multidimensional genomic mapping reveals the pathophysiology of Mycobacterium abscessus. , 2018, , .		1
655	Of staphs, streps and other things. Trends in Microbiology, 2001, 9, 309.	7.7	0
656	Back in the limelight. Trends in Microbiology, 2001, 9, 467.	7.7	0
657	Split personalities. Trends in Microbiology, 2002, 10, 115.	7.7	Ο
658	Searching for clues. Trends in Microbiology, 2002, 10, 354-355.	7.7	0
659	Spot the difference…. Trends in Microbiology, 2002, 10, 489-490.	7.7	Ο
660	A matter of fitness. Trends in Microbiology, 2003, 11, 111-112.	7.7	0
661	Genomic pot pourri. Nature Reviews Microbiology, 2004, 2, 928-929.	28.6	0
662	New environments, versatile genomes. Nature Reviews Microbiology, 2004, 2, 446-447.	28.6	0
663	Bacterial pathogens of man. , 2005, , .		0
664	Diversity at every level. Nature Reviews Microbiology, 2005, 3, 196-197.	28.6	0
665	Livelihood hazards. Nature Reviews Microbiology, 2005, 3, 278-279.	28.6	0
666	lleal Pouch Microbial Diversity. Annals of Surgery, 2011, 254, 669-670.	4.2	0

#	Article	IF	CITATIONS
667	Transcription factor T-bet regulates intestinal inflammation mediated by innate lymphoid cells with the interleukin-7 receptor. Lancet, The, 2013, 381, S89.	13.7	0
668	P194 Molecular anatomy of invasive group A streptococcal (iGAS) isolates in England. International Journal of Antimicrobial Agents, 2013, 42, S103-S104.	2.5	0
669	YI.4â€Gonococcal Genomics Shows Impact of Recombination on Obscuring Phylogenetic Signal and Disseminating Resistance Loci. Sexually Transmitted Infections, 2013, 89, A25.3-A26.	1.9	0
670	Complete Whole-Genome Sequence of Salmonella enterica subsp. enterica Serovar Java NCTC5706. Genome Announcements, 2016, 4, .	0.8	0
671	Genomes on ice. Nature Reviews Microbiology, 2016, 14, 134-134.	28.6	0
672	386 The genetic diversity of Staphylococcus aureus colonisation in atopic eczema disease flare. Journal of Investigative Dermatology, 2017, 137, S258.	0.7	0
673	P1.38â€Bacterial populations detected within first void urine samples of symptomatic male patients with urethritis. , 2017, , .		0
674	706: LOSS OF FECAL MICROBIAL DENSITY AND INTESTINAL FERMENTATION EFFICIENCY IN CRITICALLY ILL CHILDREN. Critical Care Medicine, 2018, 46, 339-339.	0.9	0
675	SEQUENCING THE ENTIRE GENOME OF ERWINIA AMYLOVORA. Acta Horticulturae, 2006, , 395-396.	0.2	0
676	Biosynthesis of a 'fungal' peptide antibiotic by Burkholderia gladioli. Planta Medica, 2016, 81, S1-S381.	1.3	0
677	Characterisation of vietnamycin: a novel Burkholderia antibiotic targeting mupirocin-resistant methicillin-resistant Staphylococcus aureus (MRSA). Planta Medica, 2016, 81, S1-S381.	1.3	0
678	The failure of different strains of Yersinia pestis to produce lipopolysaccharide O-antigen under different growth conditions is due to mutations in the O-antigen gene cluster. FEMS Microbiology Letters, 2001, 197, 229-233.	1.8	0