
Jingtong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5778578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical Cu3P-based nanoarrays on nickel foam as efficient electrocatalysts for overall water splitting. Green Energy and Environment, 2022, 7, 236-245.	8.7	15
2	Synthesis of V-doped urchin-like NiCo2O4 with rich oxygen vacancies for electrocatalytic oxygen evolution reactions. Electrochimica Acta, 2022, 406, 139800.	5.2	25
3	Dual Role of Pyridinic-N Doping in Carbon-Coated Ni Nanoparticles for Highly Efficient Electrochemical CO ₂ Reduction to CO over a Wide Potential Range. ACS Catalysis, 2022, 12, 1364-1374.	11.2	73
4	Controllable synthesis of platinum–tin intermetallic nanoparticles with high electrocatalytic performance for ethanol oxidation. Inorganic Chemistry Frontiers, 2022, 9, 1143-1151.	6.0	5
5	Synthesis of P-doped NiS as an electrode material for supercapacitors with enhanced rate capability and cycling stability. New Journal of Chemistry, 2022, 46, 6461-6469.	2.8	5
6	Synthesis and characterization of a series of complexes with enhanced visible-light photocatalytic hydrogen evolution. Journal of Chemical Research, 2022, 46, 174751982210855.	1.3	1
7	In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor. Journal of Energy Chemistry, 2022, 70, 27-35.	12.9	32
8	High-precision regulation synthesis of Fe-doped Co2P nanorod bundles as efficient electrocatalysts for hydrogen evolution in all-pH range and seawater. Journal of Energy Chemistry, 2021, 55, 92-101.	12.9	89
9	Ultra-small Co/CoO nanoparticles dispersed on N-doped carbon nanosheets for highly efficient electrocatalytic oxygen evolution reaction. Journal of Energy Chemistry, 2021, 55, 345-354.	12.9	29
10	An efficient and stable coral-like CoFeS ₂ for wearable flexible all-solid-state asymmetric supercapacitor applications. New Journal of Chemistry, 2021, 45, 16606-16616.	2.8	8
11	The facile synthesis of core–shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Advances, 2021, 11, 26326-26335.	3.6	20
12	Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 287, 119953.	20.2	175
13	Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity. Applied Catalysis B: Environmental, 2021, 288, 119996.	20.2	44
14	Constructing RuCoO _x /NC Nanosheets with Low Crystallinity within ZIFâ€9 as Bifunctional Catalysts for Highly Efficient Overall Water Splitting. Chemistry - an Asian Journal, 2021, 16, 2511-2519.	3.3	6
15	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 23614-23618.	13.8	197
16	MoP supported on reduced graphene oxide for high performance electrochemical nitrogen reduction. Dalton Transactions, 2020, 49, 988-992.	3.3	20
17	Identifying the role of Ni and Fe in Ni–Fe co-doped orthorhombic CoSe2 for driving enhanced electrocatalytic activity for oxygen evolution reaction. Electrochimica Acta, 2020, 335, 135682.	5.2	39
18	High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2020, 392, 123661.	12.7	78

JINGTONG ZHANG

#	Article	IF	CITATIONS
19	Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118467.	20.2	93
20	Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor. Advanced Energy Materials, 2019, 9, 1901213.	19.5	275
21	Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electrocatalytic water splitting. Applied Catalysis B: Environmental, 2019, 259, 118039.	20.2	124
22	P-Doped Iron–Nickel Sulfide Nanosheet Arrays for Highly Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 27667-27676.	8.0	155
23	Monodisperse tin nanoparticles and hollow tin oxide nanospheres as anode materials for high performance lithium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 473-476.	6.0	14
24	Yolk–shell structured SnSe as a high-performance anode for Na-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 562-565.	6.0	48
25	MoS2 nanosheets supported gold nanoparticles for electrochemical nitrogen fixation at various pH value. Electrochimica Acta, 2019, 317, 34-41.	5.2	44
26	SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chemical Engineering Journal, 2019, 370, 677-683.	12.7	77
27	Generalized Synthesis of Uniform Metal Nanoparticles Assisted with Tungsten Hexacarbonyl. Chemistry of Materials, 2019, 31, 4325-4329.	6.7	15
28	The Effects of Dynamic Transformation on the Formation of Pt-M (M = Ni, Fe) Nanocrystals. MRS Advances, 2019, 4, 1377-1382.	0.9	1
29	Directed self-assembly pathways of three-dimensional Pt/Pd nanocrystal superlattice electrocatalysts for enhanced methanol oxidationÂreaction. Journal of Materials Chemistry A, 2018, 6, 12759-12767.	10.3	31
30	High-Indexed Pt ₃ Ni Alloy Tetrahexahedral Nanoframes Evolved through Preferential CO Etching. Nano Letters, 2017, 17, 2204-2210.	9.1	113
31	A dendritic core–shell Cu@PtCu alloy electrocatalyst resulting in an enhanced electron transfer ability and boosted surface active sites for an improved methanol oxidation reaction. Chemical Communications, 2017, 53, 7457-7460.	4.1	40
32	Interlayer expanded lamellar CoSe 2 on carbon paper as highly efficient and stable overall water splitting electrodes. Electrochimica Acta, 2017, 241, 106-115.	5.2	48
33	NiS nanoparticle decorated MoS ₂ nanosheets as efficient promoters for enhanced solar H ₂ evolution over Zn _x Cd _{1â^²x} S nanorods. Inorganic Chemistry Frontiers, 2017, 4, 1042-1047.	6.0	41
34	Porous Co–Mo phosphide nanotubes: an efficient electrocatalyst for hydrogen evolution. Journal of Materials Science, 2017, 52, 10406-10417.	3.7	39
35	CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 2017, 232, 561-569.	5.2	68
36	Entropy-Driven Pt ₃ Co Nanocube Assembles and Thermally Mediated Electrical Conductivity with Anisotropic Variation of the Rhombohedral Superlattice. Nano Letters, 2017, 17, 362-367.	9.1	29

3

JINGTONG ZHANG

#	Article	IF	CITATIONS
37	Mild synthesis of monodisperse tin nanocrystals and tin chalcogenide hollow nanostructures. Chemical Communications, 2017, 53, 11001-11004.	4.1	14
38	A novel organic-inorganic hybrid composition for controllably synthesizing AgI nanocrystals. AIP Conference Proceedings, 2017, , .	0.4	0
39	Lamellar structured CoSe 2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution. Electrochimica Acta, 2016, 217, 156-162.	5.2	45
40	Graphene oxide co-doped with nitrogen and sulfur and decorated with cobalt phosphide nanorods: An efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 2016, 222, 246-256.	5.2	57
41	Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Research, 2016, 9, 2284-2293.	10.4	80
42	Competing Interactions between Various Entropic Forces toward Assembly of Pt ₃ Ni Octahedra into a Body-Centered Cubic Superlattice. Nano Letters, 2016, 16, 2792-2799.	9.1	48
43	Plasmonic silver incorporated silver halides for efficient photocatalysis. Journal of Materials Chemistry A, 2016, 4, 4336-4352.	10.3	121
44	Silver Iodide Nanospheres Wrapped in Reduced Graphene Oxide for Enhanced Photocatalysis. ChemCatChem, 2015, 7, 2918-2923.	3.7	13
45	Highâ€Indexed Pt ₃ Fe Nanocatalysts and Their Enhanced Catalytic Performance in Dual Organic Reactions. ChemNanoMat, 2015, 1, 331-337.	2.8	14
46	Evolution of Self-Assembled ZnTe Magic-Sized Nanoclusters. Journal of the American Chemical Society, 2015, 137, 742-749.	13.7	58
47	Concaving AgI sub-microparticles for enhanced photocatalysis. Nano Energy, 2014, 9, 204-211.	16.0	45
48	Enhanced Visibleâ€Light Photocatalytic H ₂ Production by Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} S Modified with Earthâ€Abundant Nickelâ€Based Cocatalysts. ChemSusChem, 2014, 7, 3426-3434.	6.8	164
49	Ternary NiS/Zn <i>_x</i> Cd _{1â€<i>x</i>} S/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H ₂ â€Production Activity. Advanced Energy Materials, 2014, 4, 1301925.	19.5	244
50	Solar-driven Pt modified hollow structured CdS photocatalyst for efficient hydrogen evolution. RSC Advances, 2014, 4, 36665.	3.6	15
51	Is CO adequate to facilitate the formation of Pt3M (M = Fe, Ni and Co) nanocubes?. Chemical Communications, 2013, 49, 3955.	4.1	9
52	Compositional Tuning of Structural Stability of Lithiated Cubic Titania via a Vacancy-Filling Mechanism under High Pressure. Physical Review Letters, 2013, 110, 078304.	7.8	17
53	Highly Enhanced Exciton Recombination Rate by Strong Electron–Phonon Coupling in Single ZnTe Nanobelt. Nano Letters, 2012, 12, 6420-6427.	9.1	43
54	Ultrafast Charge Separation from Highly Reductive ZnTe/CdSe Type II Quantum Dots. Journal of Physical Chemistry Letters, 2012, 3, 2052-2058.	4.6	38

JINGTONG ZHANG

#	Article	IF	CITATIONS
55	Reversible Kirkwood–Alder Transition Observed in Pt ₃ Cu ₂ Nanoctahedron Assemblies under Controlled Solvent Annealing/Drying Conditions. Journal of the American Chemical Society, 2012, 134, 14043-14049.	13.7	52
56	Noble Metal-Free Reduced Graphene Oxide-Zn _{<i>x</i>} Cd _{1–<i>x</i>} S Nanocomposite with Enhanced Solar Photocatalytic H ₂ -Production Performance. Nano Letters, 2012, 12, 4584-4589.	9.1	845
57	Pt–Cu nanoctahedra: synthesis and comparative study with nanocubes on their electrochemical catalytic performance. Chemical Science, 2012, 3, 3302.	7.4	65
58	Low Packing Density Self-Assembled Superstructure of Octahedral Pt ₃ Ni Nanocrystals. Nano Letters, 2011, 11, 2912-2918.	9.1	50
59	Synthesis and Characterization of Wurtzite ZnTe Nanorods with Controllable Aspect Ratios. Journal of the American Chemical Society, 2011, 133, 15324-15327.	13.7	74
60	Synthesis of PbSeTe Single Ternary Alloy and Core/Shell Heterostructured Nanocubes. Journal of the American Chemical Society, 2011, 133, 17590-17593.	13.7	39
61	Monodisperse Pt ₃ Fe Nanocubes: Synthesis, Characterization, Selfâ€Assembly, and Electrocatalytic Activity. Advanced Functional Materials, 2010, 20, 3727-3733.	14.9	88
62	Enhancing by Weakening: Electrooxidation of Methanol on Pt ₃ Co and Pt Nanocubes. Angewandte Chemie - International Edition, 2010, 49, 6848-6851.	13.8	183
63	Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt ₃ Ni Nanopolyhedra. Nano Letters, 2010, 10, 638-644.	9.1	744
64	Composition and size tailored synthesis of iron selenide nanoflakes. CrystEngComm, 2010, 12, 4386.	2.6	30
65	Solutionâ€Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum–Copper Nanocubes. Angewandte Chemie - International Edition, 2009, 48, 4217-4221.	13.8	367
66	Monodisperse and highly active PtNi nanoparticles for O2 reduction. Electrochemistry Communications, 2009, 11, 2278-2281.	4.7	28
67	A General Strategy for Preparation of Pt 3d-Transition Metal (Co, Fe, Ni) Nanocubes. Journal of the American Chemical Society, 2009, 131, 18543-18547.	13.7	332
68	Coreduction Colloidal Synthesis of III–V Nanocrystals: The Case of InP. Angewandte Chemie - International Edition, 2008, 47, 3540-3542.	13.8	84
69	pâ€Type Fieldâ€Effect Transistors of Singleâ€Crystal Zinc Telluride Nanobelts. Angewandte Chemie - International Edition, 2008, 47, 9469-9471.	13.8	41
70	Simple Cubic Super Crystals Containing PbTe Nanocubes and Their Coreâ^'Shell Building Blocks. Journal of the American Chemical Society, 2008, 130, 15203-15209.	13.7	80
71	Shape-Control of ZnTe Nanocrystal Growth in Organic Solution. Journal of Physical Chemistry C, 2008, 112, 5454-5458.	3.1	84
72	Syntheses of Ag, PbSe, and PbTe Nanocrystals and Their Binary Self-Assembly Exploration at Low Size-ratio. Journal of Nanoscience and Nanotechnology, 2006, 6, 1662-1666.	0.9	6