
Shuibin Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5777190/publications.pdf Version: 2024-02-01

Shilirin Lin

#	Article	IF	CITATIONS
1	mRNA alternative polyadenylation (APA) in regulation of gene expression and diseases. Genes and Diseases, 2023, 10, 165-174.	3.4	5
2	N6-methyladenosine (m6A) modification of ribosomal RNAs (rRNAs): Critical roles in mRNA translation and diseases. Genes and Diseases, 2023, 10, 126-134.	3.4	4
3	N ⁷ -methylguanosine (m ⁷ C) tRNA modification: a novel autophagy modulator in cancer. Autophagy, 2023, 19, 360-362.	9.1	12
4	Eliminating METTL1â€mediated accumulation of PMNâ€MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatology, 2023, 77, 1122-1138.	7.3	39
5	Methyltransferase 1 is required for nonhomologous endâ€joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology, 2023, 77, 1896-1910.	7.3	17
6	Mettl5 mediated 18S rRNA N6-methyladenosine (m6A) modification controls stem cell fate determination and neural function. Genes and Diseases, 2022, 9, 268-274.	3.4	21
7	A novel inhibitor of N6-methyladenosine demethylase FTO induces mRNA methylation and shows anti-cancer activities. Acta Pharmaceutica Sinica B, 2022, 12, 853-866.	12.0	31
8	RNA epitranscriptomics: A promising new avenue for cancer therapy. Molecular Therapy, 2022, 30, 2-3.	8.2	3
9	Loss of m6A Methyltransferase METTL5 Promotes Cardiac Hypertrophy Through Epitranscriptomic Control of SUZ12 Expression. Frontiers in Cardiovascular Medicine, 2022, 9, 852775.	2.4	10
10	N6-methyladenosine (m6A) RNA modification in tumor immunity. Cancer Biology and Medicine, 2022, 19,	3.0	6
11	N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nature Communications, 2022, 13, 1478.	12.8	71
12	METTL3 attenuates proliferative vitreoretinopathy and epithelialâ€mesenchymal transition of retinal pigment epithelial cells via wnt/β atenin pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 4220-4234.	3.6	37
13	METTL3-Mediated m6A Methylation Regulates Muscle Stem Cells and Muscle Regeneration by Notch Signaling Pathway. Stem Cells International, 2021, 2021, 1-13.	2.5	30
14	N7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Molecular Cell, 2021, 81, 3339-3355.e8.	9.7	146
15	METTL1/WDR4-mediated m7G tRNA modifications and m7G codon usage promote mRNA translation and lung cancer progression. Molecular Therapy, 2021, 29, 3422-3435.	8.2	121
16	Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells. Acta Biomaterialia, 2021, 131, 326-340.	8.3	56
17	Insufficient Radiofrequency Ablation Promotes Hepatocellular Carcinoma Metastasis Through N6â€Methyladenosine mRNA Methylationâ€Dependent Mechanism. Hepatology, 2021, 74, 1339-1356.	7.3	62
18	METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway. Molecular Therapy - Nucleic Acids, 2021, 26, 333-346.	5.1	37

Shuibin Lin

#	Article	IF	CITATIONS
19	METTL3-Mediated m6A RNA Modification Regulates Corneal Injury Repair. Stem Cells International, 2021, 2021, 1-14.	2.5	6
20	METTL1â€m ⁷ Gâ€EGFR/EFEMP1 axis promotes the bladder cancer development. Clinical and Translational Medicine, 2021, 11, e675.	4.0	87
21	METTL1 promotes hepatocarcinogenesis via m ⁷ G tRNA modificationâ€dependent translation control. Clinical and Translational Medicine, 2021, 11, e661.	4.0	89
22	m ⁶ A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 12368-12378.	3.6	42
23	METTL1-mediated m7G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Research and Therapy, 2020, 11, 306.	5.5	41
24	pHâ€Responsive STINGâ€Activating DNA Nanovaccines for Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000083.	3.2	22
25	Nucleic Acid Immunotherapeutics for Cancer. ACS Applied Bio Materials, 2020, 3, 2838-2849.	4.6	18
26	METTL1 limits differentiation and functioning of EPCs derived from human-induced pluripotent stem cells through a MAPK/ERK pathway. Biochemical and Biophysical Research Communications, 2020, 527, 791-798.	2.1	10
27	N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nature Communications, 2020, 11, 2578.	12.8	163
28	N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine, 2019, 47, 195-207.	6.1	146
29	Long Noncoding RNA HOXA-AS3 Integrates NF- <i>κ</i> B Signaling To Regulate Endothelium Inflammation. Molecular and Cellular Biology, 2019, 39, .	2.3	23
30	Anti-tumor Drug THZ1 Suppresses TGFβ2-mediated EMT in Lens Epithelial Cells via Notch and TGFβ/Smad Signaling Pathway. Journal of Cancer, 2019, 10, 3778-3788.	2.5	11
31	Nucleotide resolution profiling of m7G tRNA modification by TRAC-Seq. Nature Protocols, 2019, 14, 3220-3242.	12.0	51
32	STING activation in cancer immunotherapy. Theranostics, 2019, 9, 7759-7771.	10.0	150
33	Nanovaccines for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1559.	6.1	76
34	Low doses of decitabine improve the chemotherapy efficacy against basal-like bladder cancer by targeting cancer stem cells. Oncogene, 2019, 38, 5425-5439.	5.9	19
35	Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene, 2019, 38, 4755-4772.	5.9	142
36	Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma. Bone Research, 2018, 6, 11.	11.4	99

Shuibin Lin

#	Article	IF	CITATIONS
37	CRTC1-MAML2 fusion-induced lncRNA LINC00473 expression maintains the growth and survival of human mucoepidermoid carcinoma cells. Oncogene, 2018, 37, 1885-1895.	5.9	39
38	Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nature Communications, 2018, 9, 4772.	12.8	265
39	mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis. Nature, 2018, 561, 556-560.	27.8	498
40	Reduction-Induced Decomposition and Self-Aggregation Strategy To Induce Reactive Oxygen Species Generation for Cancer Therapy. ACS Applied Bio Materials, 2018, 1, 954-960.	4.6	8
41	Mettl1/Wdr4-Mediated m7G tRNA Methylome Is Required for Normal mRNA Translation and Embryonic Stem Cell Self-Renewal and Differentiation. Molecular Cell, 2018, 71, 244-255.e5.	9.7	276
42	Notch signaling pathway mediates Doxorubicin-driven apoptosis in cancers. Cancer Management and Research, 2018, Volume 10, 1439-1448.	1.9	17
43	The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Molecular Cell, 2016, 62, 335-345.	9.7	1,148
44	MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer, 2015, 15, 321-333.	28.4	1,738
45	Identification of small molecule inhibitors of Zcchc11 TUTase activity. RNA Biology, 2015, 12, 792-800.	3.1	41
46	Methyltransferases modulate RNA stability in embryonic stem cells. Nature Cell Biology, 2014, 16, 129-131.	10.3	44
47	Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Research, 2014, 42, 11777-11791.	14.5	87
48	Brief Report: Blockade of Notch Signaling in Muscle Stem Cells Causes Muscular Dystrophic Phenotype and Impaired Muscle Regeneration. Stem Cells, 2013, 31, 823-828.	3.2	36
49	Proteomic and Functional Analyses Reveal the Role of Chromatin Reader SFMBT1 in Regulating Epigenetic Silencing and the Myogenic Gene Program*. Journal of Biological Chemistry, 2013, 288, 6238-6247.	3.4	34