Shuibin Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5777190/publications.pdf

Version: 2024-02-01

49 papers

6,592 citations

172457
29
h-index

50 g-index

52 all docs 52 docs citations

52 times ranked 8426 citing authors

#	Article	IF	CITATIONS
1	MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer, 2015, 15, 321-333.	28.4	1,738
2	The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Molecular Cell, 2016, 62, 335-345.	9.7	1,148
3	mRNA circularization by METTL3–elF3h enhances translation and promotes oncogenesis. Nature, 2018, 561, 556-560.	27.8	498
4	Mettl1/Wdr4-Mediated m7G tRNA Methylome Is Required for Normal mRNA Translation and Embryonic Stem Cell Self-Renewal and Differentiation. Molecular Cell, 2018, 71, 244-255.e5.	9.7	276
5	Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nature Communications, 2018, 9, 4772.	12.8	265
6	N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nature Communications, 2020, 11, 2578.	12.8	163
7	STING activation in cancer immunotherapy. Theranostics, 2019, 9, 7759-7771.	10.0	150
8	N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine, 2019, 47, 195-207.	6.1	146
9	N7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Molecular Cell, 2021, 81, 3339-3355.e8.	9.7	146
10	Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene, 2019, 38, 4755-4772.	5.9	142
11	METTL1/WDR4-mediated m7G tRNA modifications and m7G codon usage promote mRNA translation and lung cancer progression. Molecular Therapy, 2021, 29, 3422-3435.	8.2	121
12	Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma. Bone Research, 2018, 6, 11.	11.4	99
13	METTL1 promotes hepatocarcinogenesis via m ⁷ G tRNA modificationâ€dependent translation control. Clinical and Translational Medicine, 2021, 11, e661.	4.0	89
14	Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Research, 2014, 42, 11777-11791.	14.5	87
15	METTL1â€m ⁷ Gâ€EGFR/EFEMP1 axis promotes the bladder cancer development. Clinical and Translational Medicine, 2021, 11, e675.	4.0	87
16	Nanovaccines for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1559.	6.1	76
17	N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nature Communications, 2022, 13, 1478.	12.8	71
18	Insufficient Radiofrequency Ablation Promotes Hepatocellular Carcinoma Metastasis Through N6â€Methyladenosine mRNA Methylationâ€Dependent Mechanism. Hepatology, 2021, 74, 1339-1356.	7.3	62

#	Article	IF	Citations
19	Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells. Acta Biomaterialia, 2021, 131, 326-340.	8.3	56
20	Nucleotide resolution profiling of m7G tRNA modification by TRAC-Seq. Nature Protocols, 2019, 14, 3220-3242.	12.0	51
21	Methyltransferases modulate RNA stability in embryonic stem cells. Nature Cell Biology, 2014, 16, 129-131.	10.3	44
22	m ⁶ A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 12368-12378.	3.6	42
23	Identification of small molecule inhibitors of Zcchc11 TUTase activity. RNA Biology, 2015, 12, 792-800.	3.1	41
24	METTL1-mediated m7G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Research and Therapy, 2020, 11, 306.	5 . 5	41
25	CRTC1-MAML2 fusion-induced lncRNA LINC00473 expression maintains the growth and survival of human mucoepidermoid carcinoma cells. Oncogene, 2018, 37, 1885-1895.	5.9	39
26	Eliminating METTL1â€mediated accumulation of PMNâ€MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatology, 2023, 77, 1122-1138.	7.3	39
27	METTL3 attenuates proliferative vitreoretinopathy and epithelialâ€mesenchymal transition of retinal pigment epithelial cells via wnt/βâ€catenin pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 4220-4234.	3.6	37
28	METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway. Molecular Therapy - Nucleic Acids, 2021, 26, 333-346.	5.1	37
29	Brief Report: Blockade of Notch Signaling in Muscle Stem Cells Causes Muscular Dystrophic Phenotype and Impaired Muscle Regeneration. Stem Cells, 2013, 31, 823-828.	3.2	36
30	Proteomic and Functional Analyses Reveal the Role of Chromatin Reader SFMBT1 in Regulating Epigenetic Silencing and the Myogenic Gene Program*. Journal of Biological Chemistry, 2013, 288, 6238-6247.	3.4	34
31	A novel inhibitor of N6-methyladenosine demethylase FTO induces mRNA methylation and shows anti-cancer activities. Acta Pharmaceutica Sinica B, 2022, 12, 853-866.	12.0	31
32	METTL3-Mediated m6A Methylation Regulates Muscle Stem Cells and Muscle Regeneration by Notch Signaling Pathway. Stem Cells International, 2021, 2021, 1-13.	2. 5	30
33	Long Noncoding RNA HOXA-AS3 Integrates NF- <i>\hat{P}</i> B Signaling To Regulate Endothelium Inflammation. Molecular and Cellular Biology, 2019, 39, .	2.3	23
34	pHâ€Responsive STINGâ€Activating DNA Nanovaccines for Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000083.	3.2	22
35	Mettl5 mediated 18S rRNA N6-methyladenosine (m6A) modification controls stem cell fate determination and neural function. Genes and Diseases, 2022, 9, 268-274.	3.4	21
36	Low doses of decitabine improve the chemotherapy efficacy against basal-like bladder cancer by targeting cancer stem cells. Oncogene, 2019, 38, 5425-5439.	5.9	19

#	Article	IF	Citations
37	Nucleic Acid Immunotherapeutics for Cancer. ACS Applied Bio Materials, 2020, 3, 2838-2849.	4.6	18
38	Notch signaling pathway mediates Doxorubicin-driven apoptosis in cancers. Cancer Management and Research, 2018, Volume 10, 1439-1448.	1.9	17
39	Methyltransferase 1 is required for nonhomologous endâ€joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology, 2023, 77, 1896-1910.	7.3	17
40	N ⁷ -methylguanosine (m ⁷ G) tRNA modification: a novel autophagy modulator in cancer. Autophagy, 2023, 19, 360-362.	9.1	12
41	Anti-tumor Drug THZ1 Suppresses TGF \hat{l}^2 2-mediated EMT in Lens Epithelial Cells via Notch and TGF \hat{l}^2 /Smad Signaling Pathway. Journal of Cancer, 2019, 10, 3778-3788.	2.5	11
42	METTL1 limits differentiation and functioning of EPCs derived from human-induced pluripotent stem cells through a MAPK/ERK pathway. Biochemical and Biophysical Research Communications, 2020, 527, 791-798.	2.1	10
43	Loss of m6A Methyltransferase METTL5 Promotes Cardiac Hypertrophy Through Epitranscriptomic Control of SUZ12 Expression. Frontiers in Cardiovascular Medicine, 2022, 9, 852775.	2.4	10
44	Reduction-Induced Decomposition and Self-Aggregation Strategy To Induce Reactive Oxygen Species Generation for Cancer Therapy. ACS Applied Bio Materials, 2018, 1, 954-960.	4.6	8
45	METTL3-Mediated m6A RNA Modification Regulates Corneal Injury Repair. Stem Cells International, 2021, 2021, 1-14.	2.5	6
46	N6-methyladenosine (m6A) RNA modification in tumor immunity. Cancer Biology and Medicine, 2022, 19,	3.0	6
47	mRNA alternative polyadenylation (APA) in regulation of gene expression and diseases. Genes and Diseases, 2023, 10, 165-174.	3.4	5
48	N6-methyladenosine (m6A) modification of ribosomal RNAs (rRNAs): Critical roles in mRNA translation and diseases. Genes and Diseases, 2023, 10, 126-134.	3.4	4
49	RNA epitranscriptomics: A promising new avenue for cancer therapy. Molecular Therapy, 2022, 30, 2-3.	8.2	3