List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5775611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple 3-Phase PMA-SynRM With Delta Windings for Enhanced Fault Tolerance. IEEE Transactions on Industrial Electronics, 2023, 70, 1094-1104.	7.9	6
2	Fast Magnetic Field Approximation Method for Simulation of Coaxial Magnetic Gears Using AI. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2023, 4, 400-408.	3.9	3
3	Novel DC-Saturation-Relieving Hybrid Reluctance Machine With Skewed Permanent Magnets for Electric Vehicle Propulsion. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	4
4	A Novel Winding Switching Control Strategy of a Consequent-Pole Ferrite-PM Hybrid-Excited Machine for Electric Vehicle Application. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	4
5	A Novel High-Order-Harmonic Winding Design Method for Vernier Reluctance Machine With DC Coils Across Two Stator Teeth. IEEE Transactions on Industrial Electronics, 2022, 69, 7696-7707.	7.9	16
6	A Novel Slot-PM Assisted Complementary-Rotor Doubly Salient Machine With Enhanced Torque Performance. IEEE Transactions on Industrial Electronics, 2022, 69, 11499-11509.	7.9	4
7	Design and Analysis of a Novel Double-Stator Double-Rotor Motor Drive System for In-Wheel Direct Drive of Electric Vehicles. Machines, 2022, 10, 27.	2.2	8
8	Novel Steel-Bar Starting Cage Line-Start Permanent Magnet Machine With Spoke-Type Insulation Layers. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	4
9	Comparative Analysis and Optimization of Novel Pulse Injection Sensorless Drive Methods for Fault-Tolerant DC Vernier Reluctance Machine. IEEE Transactions on Power Electronics, 2022, 37, 13566-13576.	7.9	5
10	Design and optimization of yokeless magnetic gear with asymmetric Halbach permanent magnet array for electric vehicle powertrain. IET Renewable Power Generation, 2022, 16, 2223-2232.	3.1	5
11	Flux-Modulated Relieving-DC-Saturation Hybrid Reluctance Machine With Synthetic Slot-PM Excitation for Electric Vehicle In-Wheel Propulsion. IEEE Transactions on Industrial Electronics, 2021, 68, 6075-6086.	7.9	21
12	Robust Model Predictive Control for a Three-Phase PMSM Motor With Improved Control Precision. IEEE Transactions on Industrial Electronics, 2021, 68, 838-849.	7.9	54
13	Adaptive Degrees-of-Freedom Finite-Element Analysis of 3-D Transient Magnetic Problems. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	0
14	Comparative Analysis of Different Permanent Magnet Arrangements in a Novel Flux Modulated Electric Machine. IEEE Access, 2021, 9, 14437-14445.	4.2	11
15	3-D nonlinear magnetic field analysis with a novel adaptive finite element method. Electrical Engineering, 2021, 103, 2603-2610.	2.0	0
16	Design and optimisation of a bidirectional flux modulation machine for AC and DC power supplies. IET Renewable Power Generation, 2021, 15, 1996-2006.	3.1	1
17	Design and Comparison of Vernier Permanent-Magnet Machines With Different Winding Types Based on Fractional-Slot Windings. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	10
18	Analysis and Design of a New Relieving-DC-Saturation Transverse-Flux Tubular Motor With Complementary Magnetic Circuit. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	5

#	Article	IF	CITATIONS
19	Multilevel Optimization of a Novel Dual-PM Dual-Electric Port Generator for Hybrid AC/DC System. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	3
20	Study on the PWM Ripple Current Based Turn Fault Detection for Interior PM Machine. IEEE Transactions on Transportation Electrification, 2021, 7, 1537-1547.	7.8	5
21	Investigation of Hybrid-Magnet-Circuit Variable Flux Memory Machines With Different Hybrid Magnet Configurations. IEEE Transactions on Industry Applications, 2021, 57, 340-351.	4.9	23
22	Design and Analysis of a Novel Dual-Airgap Dual Permanent Magnet Vernier Machine. IEEE Access, 2021, 9, 57188-57197.	4.2	2
23	A Novel Neural Network Cell Method for Solving Nonlinear Electromagnetic Problems. Advanced Theory and Simulations, 2021, 4, 2100216.	2.8	1
24	A New Relieving-DC-Saturation Hybrid Excitation Vernier Machine for HEV Starter Generator Application. IEEE Transactions on Industrial Electronics, 2020, 67, 6342-6353.	7.9	41
25	Design of a New Relieving-DC-Saturation Hybrid Reluctance Machine for Fault-Tolerant In-Wheel Direct Drive. IEEE Transactions on Industrial Electronics, 2020, 67, 9571-9581.	7.9	32
26	Analysis and design of nanofluid-filled power transformers. Electrical Engineering, 2020, 102, 321-329.	2.0	3
27	Sensitivity Analysis and Design Optimization of a New Hybrid-Excited Dual-PM Generator With Relieving-DC-Saturation Structure for Stand-Alone Wind Power Generation. IEEE Transactions on Magnetics, 2020, 56, 1-5.	2.1	12
28	Comparative Study of Relieving-DC-Saturation Hybrid Excited Vernier Machine With Different Rotor Pole Designs for Wind Power Generation. IEEE Access, 2020, 8, 198900-198911.	4.2	6
29	A Modified Shuffled Frog Leaping Algorithm for the Topology Optimization of Electromagnet Devices. Applied Sciences (Switzerland), 2020, 10, 6186.	2.5	4
30	Design and Analysis of a Linear Memory Machine for Ocean Wave Power Generation. Energies, 2020, 13, 5216.	3.1	0
31	A Method to Improve Torque Density in a Flux-Switching Permanent Magnet Machine. Energies, 2020, 13, 5308.	3.1	4
32	Numerical and Experimental Study on Design Optimization of Hybrid Metamaterial Slab for Wireless Power Transmission. IEEE Access, 2020, 8, 82700-82708.	4.2	8
33	3-D Transient Magneto-Thermal Field Analysis Using Adaptive Degrees-of-Freedom Finite-Element Method. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	0
34	An Indirect Reference Vector-Based Model Predictive Control for a Three-Phase PMSM Motor. IEEE Access, 2020, 8, 29435-29445.	4.2	27
35	Design and Optimization of a Dual-Permanent-Magnet Vernier Machine With a Novel Optimization Model. IEEE Transactions on Magnetics, 2020, 56, 1-5.	2.1	15
36	Design and Optimization of a Novel Dual-PM Machine for Electric Vehicle Applications. IEEE Transactions on Vehicular Technology, 2020, 69, 14391-14400.	6.3	25

#	Article	IF	CITATIONS
37	A Novel Dual-Rotor Bidirectional Flux-Modulation PM Generator for Stand-Alone DC Power Supply. IEEE Transactions on Industrial Electronics, 2019, 66, 818-828.	7.9	20
38	Design of a Novel Parallel-Hybrid-Excited Dual-PM Machine Based on Armature Harmonics Diversity for Electric Vehicle Propulsion. IEEE Transactions on Industrial Electronics, 2019, 66, 4209-4219.	7.9	53
39	Multi-Objective Optimization of a Direct-Drive Dual-Structure Permanent Magnet Machine. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	14
40	An adaptive degrees-of-freedom finite element method for 3-D nonlinear magneto-thermal field analysis. Numerical Heat Transfer; Part A: Applications, 2019, 75, 523-532.	2.1	4
41	Numerical Study on Natural Convective Heat Transfer of Nanofluids in Disc-Type Transformer Windings. IEEE Access, 2019, 7, 51267-51275.	4.2	16
42	An adjustable degrees-of-freedom numerical method for computing the temperature distribution of electrical devices. Electrical Engineering, 2019, 101, 507-516.	2.0	3
43	Design and Analysis of a Novel Synthetic Slot Dual-PM Machine. IEEE Access, 2019, 7, 29916-29923.	4.2	8
44	A Multiscale Topology Optimization Methodology Based on Sequential Element Rejection–Admission and Boundary Element Evolvement. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	4
45	Torque Component Quantification and Design Guideline for Dual Permanent Magnet Vernier Machine. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	28
46	A New Modular Relieving-DC-Saturation Vernier Reluctance Machine Excited by Zero-Sequence Current for Electric Vehicle. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	26
47	A Novel Vernier Reluctance Machine Excited by Slot PMs and Zero-Sequence Current for Electric Vehicle. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	15
48	Novel Hybrid-excited Permanent Magnet Machine Based on the Flux Modulation Effect. , 2019, , .		1
49	Design Optimization of a Pole-Changing Biased Flux Machine Based on Sensitivity Analysis. , 2019, , .		1
50	Numerical study on nanofluids natural convection heat transfer inside power transformer windings. AIP Advances, 2019, 9, .	1.3	2
51	Analysis of Flux Regulation Principle in a Novel Hybrid-Magnet-Circuit Variable Flux Memory Machine. , 2019, , .		3
52	Heat transfer comparison of nanofluid filled transformer and traditional oil-immersed transformer. AIP Advances, 2018, 8, .	1.3	12
53	Stabilized Bordered Block Diagonal Form for Solving Nonlinear Magnetic Field Problems. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	1
54	Sensitivity Analysis and Optimal Design of a Dual Mechanical Port Bidirectional Flux-Modulated Machine. IEEE Transactions on Industrial Electronics, 2018, 65, 211-220.	7.9	54

#	Article	IF	CITATIONS
55	Optimization of Cooling Ducts in Nanofluid-Filled Power Transformer Windings. , 2018, , .		0
56	Topology Exploration and Torque Component Analysis of Double Stator Biased Flux Machines Based on Magnetic Field Modulation Mechanism. IEEE Transactions on Energy Conversion, 2018, 33, 584-593.	5.2	6
57	Design and comparison of electrically excited double rotor flux switching motor drive systems for automotive applications. CES Transactions on Electrical Machines and Systems, 2018, 2, 191-199.	3.5	5
58	Finite-Element Method With Topological Data Structure Mesh for Optimization of Electrical Devices. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	1
59	Applying Response Surface Method to Oil-Immersed Transformer Cooling System for Design Optimization. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	9
60	A New Stable Full-Wave Maxwell Solver for All Frequencies. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	8
61	Optimal Structure Design of Permanent Magnet Motors Based on a General Pattern of Rotor Topologies. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	6
62	Fast Numerical Method for Computing Resonant Characteristics of Electromagnetic Devices Based on Finite-Element Method. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	6
63	A Novel Gauged Vector Potential Formulation for 3-D Motional Eddy-Current Problems Using Edge Elements. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	0
64	A Novel Coulomb-Gauged Magnetic Vector Potential Formulation for 3-D Eddy-Current Field Analysis Using Edge Elements. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	7
65	A Novel Formulation With Coulomb Gauge for 3-D Magnetostatic Problems Using Edge Elements. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	5
66	Electrical-Continuously Variable Transmission System Based on Doubly Fed Flux-Bidirectional Modulation. IEEE Transactions on Industrial Electronics, 2017, 64, 2722-2731.	7.9	38
67	A Stable Iteration Procedure of Newton's Method in Finite-Element Computation of Nonlinear Magnetic Field Problems With a Vector Hysteresis Model. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	3
68	A novel axial flux stator and rotor dual permanent magnet machine. CES Transactions on Electrical Machines and Systems, 2017, 1, 140-145.	3.5	4
69	A Concept of General Flux-Modulated Electric Machines Based on a Unified Theory and Its Application to Developing a Novel Doubly-Fed Dual-Stator Motor. IEEE Transactions on Industrial Electronics, 2017, 64, 9914-9923.	7.9	43
70	A dual permanent magnet machine for high-torque low-speed applications. , 2017, , .		6
71	A novel stator and rotor dual PM flux modulated machine. Chinese Journal of Electrical Engineering, 2017, 3, 10-15.	3.4	4
72	Finite element method of nonlinear magnetic field computation embedded with different vector Jiles-Atherton hysteresis models. International Journal of Applied Electromagnetics and Mechanics, 2017, 55, 135-140.	0.6	1

#	Article	IF	CITATIONS
73	Performance comparison of axial-flux-modulated motor with two pole-slot combinations. Turkish Journal of Electrical Engineering and Computer Sciences, 2017, 25, 484-496.	1.4	0
74	Control of a Dual-Stator Flux-Modulated Motor for Electric Vehicles. Energies, 2016, 9, 517.	3.1	12
75	Influence of Shape Anisotropy on Magnetization Dynamics Driven by Spin Hall Effect. Advances in Materials Science and Engineering, 2016, 2016, 1-8.	1.8	Ο
76	An adaptive dual-order finite-element method by adjusting degrees-of-freedom in transient field analysis. , 2016, , .		0
77	A unified theory of flux-modulated electric machines. , 2016, , .		14
78	A fast remesh-free mesh deformation method based on radial basis function interpolation and its application to optimal design of electromagnetic devices. , 2016, , .		0
79	A new stable full-wave maxwell solver for all frequencies. , 2016, , .		1
80	A novel formulation with Coulomb gauge for 3-D magnetostatic problems using edge elements. , 2016, ,		0
81	History based learning artificial bee colony algorithm for electromagnetic inverse problems. , 2016, , .		0
82	A novel structure of metameterial with high bandwidth for wireless power transfer systems. , 2016, , .		0
83	A novel gauged vector potential formulation for 3-D motional eddy-current problems using edge elements. , 2016, , .		0
84	Design and Sensorless Control of a Novel Axial-Flux Permanent Magnet Machine for In-Wheel Applications. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	8
85	Design of an Electrical Continuously Variable Transmission Based Wind Energy Conversion System. IEEE Transactions on Industrial Electronics, 2016, 63, 6745-6755.	7.9	34
86	Optimal Design of Magnetic Gears With a General Pattern of Permanent Magnet Arrangement. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	23
87	A novel coulomb gauged magnetic vector potential formulation for 3-D eddy-current field analysis using edge elements. , 2016, , .		0
88	A novel design method for the electrical machines with biased DC excitation flux linkage. , 2016, , .		0
89	A novel disc machine with axial biased flux and complementary salient rotors. , 2016, , .		0
90	A Novel Dual Rotor Flux-Bidirectional-Modulation Machine for Hybrid Electrical Vehicles. , 2016, , .		1

#	Article	IF	CITATIONS
91	A novel iterative linear solver for 3-D magnetostatic problems using edge elements. , 2016, , .		0
92	Iron Loss Separation in High Frequency Using Numerical Techniques. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	5
93	Application of Edge Elements to 3-D Electromagnetic Field Analysis Accounting for Both Inductive and Capacitive Effects. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	16
94	Performance Analysis of a Novel Triple-Permanent-Magnet- Excited Magnetic Gear and Its Design Method. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	17
95	Design and Analysis of a Shoe-Embeded Power Harvester Based on Magnetic Gear. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	8
96	An Electromagnetic Field and Electric Circuit Coupled Method for Solid Conductors in 3-D Finite-Element Method. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	21
97	A Novel Structure of Dual-Stator Hybrid Excitation Synchronous Motor. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	11
98	A Mesh Deformation Algorithm and Its Application in Optimal Motor Design. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	5
99	A Novel Multiphase Brushless Power-Split Transmission System for Wind Power Generation. IEEE Transactions on Magnetics, 2016, 52, 1-7.	2.1	9
100	A Dynamic Dual-Response-Surface Methodology for Optimal Design of a Permanent-Magnet Motor Using Finite-Element Method. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	29
101	Investigation and analysis of amorphous magnetic materials for hybrid-flux-modulated motor. Materials Research Innovations, 2015, 19, S10-424-S10-430.	2.3	0
102	Electromagnetic Performance Analysis of Novel Flux-Regulatable Permanent Magnet Machines for Wide Constant-Power Speed Range Operation. Energies, 2015, 8, 13971-13984.	3.1	8
103	Data structures and program techniques of finite element methods for analysis and optimization of electric devices. International Journal of Applied Electromagnetics and Mechanics, 2015, 47, 875-883.	0.6	2
104	A Methodology Based on Mesh Morphing Algorithm and Improved Tabu Algorithm for Non-linear Inverse Scattering. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	2
105	A Novel Approach to Investigate the Hot-Spot Temperature Rise in Power Transformers. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	21
106	Nonlinear Convergence Acceleration of Magnetic Field Computation. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	6
107	Electromagnetic Performance Analysis of Novel HTS Doubly Fed Flux-Modulated Machines. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	4
108	Hysteresis Modeling in Transient Analysis of Electric Motors With AlNiCo Magnets. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	16

#	Article	IF	CITATIONS
109	A Novel Hybrid-Flux Magnetic Gear and Its Performance Analysis Using the 3-D Finite Element Method. Energies, 2015, 8, 3313-3327.	3.1	8
110	An Improved Evolution Strategy and Its Application to Inverse Scattering in Microwave Imaging. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	8
111	Design Optimization of a Novel Doubly Fed Dual-Rotor Flux-Modulated Machine for Hybrid Electric Vehicles. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	10
112	A Quantitative Comparison Study of Power-Electronic-Driven Flux-Modulated Machines Using Magnetic Field and Thermal Field Co-Simulation. IEEE Transactions on Industrial Electronics, 2015, 62, 6076-6084.	7.9	37
113	Design and analysis of novel magnetic fluxâ€modulated mnemonic machines. IET Electric Power Applications, 2015, 9, 469-477.	1.8	28
114	Novel Dual-Layer and Triple-Layer Permanent-Magnet-Excited Synchronous Motors. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	3
115	A Novel Magnetic-Geared Tubular Linear Machine With Halbach Permanent-Magnet Arrays for Tidal Energy Conversion. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	29
116	Magnetic Circuit Analysis for a Magnetless Double-Rotor Flux Switching Motor. IEEE Transactions on Magnetics, 2015, 51, 1-5.	2.1	7
117	Design Optimization of a Permanent Magnet Motor Derived From a General Magnetization Pattern. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	10
118	Design and Analysis of a New HTS Double-Stator Doubly Fed Wind Generator. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	10
119	A New Dual-Stator Bidirectional-Modulated PM Machine and Its Optimization. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	9
120	A feasibility study on a new brushless and gearless contra-rotating permanent magnet wind power generator. Journal of Applied Physics, 2014, 115, .	2.5	5
121	Development of a Novel Brushless Power Split Transmission System for Wind Power Generation Application. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	11
122	A Novel Triple-Permanent-Magnet-Excited Hybrid-Flux Magnetic Gear and Its Design Method Using 3-D Finite Element Method. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	6
123	A Novel High Torque-Density Triple-Permanent-Magnet-Excited Magnetic Gear. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	35
124	Numerical Analysis and Optimization of Lobe-Type Magnetic Shielding in a 334 MVA Single-Phase Auto-Transformer. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	16
125	A Quantitative Comparison Analysis of Radial-Flux, Transverse-Flux, and Axial-Flux Magnetic Gears. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	43
126	A Novel Magnetic Gear With Intersecting Axes. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	14

#	Article	IF	CITATIONS
127	A Fast Frequency-Domain Parameter Extraction Method Using Time-Domain FEM. IEEE Transactions on Magnetics, 2014, 50, 433-436.	2.1	1
128	Designing Loudspeaker by Ensemble of Composite Differential Evolution Ingredients. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	1
129	Fast Algorithm to Obtain the Torque Characteristics With Respect to Load Angle of Synchronous Machines Using Finite Element Method. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	1
130	A Novel Fast Remesh-Free Mesh Deformation Method and Its Application to Optimal Design of Electromagnetic Devices. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	6
131	Design Optimizations of Electromagnetic Devices Using Sensitivity Analysis and Tabu Algorithm. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	7
132	Imbalanced Force in Permanent Magnet Brushless Motors With Magnetic and/or Electric Asymmetries. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	2
133	A New Hybrid-Excited Electric Continuous Variable Transmission System. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	6
134	Design and Analysis of a Magnetless Double-Rotor Flux Switching Motor for Low Cost Application. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	31
135	Adaptive Discontinuous Galerkin Method for Transient Analysis of Eddy Current Fields in High-Speed Rotating Solid Rotors. IEEE Transactions on Magnetics, 2014, 50, 589-592.	2.1	10
136	A Modification of Artificial Bee Colony Algorithm Applied to Loudspeaker Design Problem. IEEE Transactions on Magnetics, 2014, 50, 737-740.	2.1	41
137	A Novel Stator and Rotor Dual PM Vernier Motor With Space Vector Pulse Width Modulation. IEEE Transactions on Magnetics, 2014, 50, 805-808.	2.1	62
138	Novel Electrical Continuously Variable Transmission System and its Numerical Model. IEEE Transactions on Magnetics, 2014, 50, 757-760.	2.1	4
139	A Novel Double-Stator Double-Rotor Brushless Electrical Continuously Variable Transmission System. IEEE Transactions on Magnetics, 2013, 49, 3909-3912.	2.1	45
140	A Novel Rotor Position Detection Method for Sensorless Control of Magnetic-Geared Permanent-Magnet Brushless Motor. IEEE Transactions on Magnetics, 2013, 49, 3961-3964.	2.1	8
141	A General Time-Domain Finite-Element Method for Frequency-Domain Solutions. IEEE Transactions on Magnetics, 2013, 49, 1284-1289.	2.1	1
142	Instantaneous Power Balance Analysis in Finite-Element Method of Transient Magnetic Field and Circuit Coupled Computation. IEEE Transactions on Magnetics, 2013, 49, 1561-1564.	2.1	5
143	A Novel Adaptive Mesh Finite Element Method for Nonlinear Magnetic Field Analysis. IEEE Transactions on Magnetics, 2013, 49, 1777-1780.	2.1	15
144	Extension of Time-Domain Finite Element Method to Nonlinear Frequency-Sweeping Problems. IEEE Transactions on Magnetics, 2013, 49, 1781-1784.	2.1	2

#	Article	IF	CITATIONS
145	A Multi-Slice Finite Element Model Including Distributive Capacitances for Wireless Magnetic Resonant Energy Transfer Systems With Circular Coils. IEEE Transactions on Magnetics, 2013, 49, 1857-1860.	2.1	1
146	A Hybrid Optimal Design Strategy of Wireless Magnetic-Resonant Charger for Deep Brain Stimulation Devices. IEEE Transactions on Magnetics, 2013, 49, 2145-2148.	2.1	16
147	Design of a Novel Electrical Continuously Variable Transmission System Based on Harmonic Spectra Analysis of Magnetic Field. IEEE Transactions on Magnetics, 2013, 49, 2161-2164.	2.1	40
148	A Novel Mesh Morphing Technique for Large Shape Deformation and Its Application to Optimal Design Problems. IEEE Transactions on Magnetics, 2013, 49, 2165-2168.	2.1	5
149	Power Balanced Electromagnetic Torque Computation in Electric Machines Based on Energy Conservation in Finite-Element Method. IEEE Transactions on Magnetics, 2013, 49, 2385-2388.	2.1	11
150	An Operator Splitting Finite Element Method for Eddy-Current Field Analysis in High-Speed Rotating Solid Conductors. IEEE Transactions on Magnetics, 2013, 49, 3171-3174.	2.1	6
151	A New Low Radiation Wireless Transmission System in Mobile Phone Application Based on Magnetic Resonant Coupling. IEEE Transactions on Magnetics, 2013, 49, 3476-3479.	2.1	0
152	An Improved Artificial Bee Colony Algorithm for Optimal Design of Electromagnetic Devices. IEEE Transactions on Magnetics, 2013, 49, 4811-4816.	2.1	45
153	A Fast Algorithm for Frequency-Domain Solutions of Electromagnetic Field Computation of Electric Devices Using Time-Domain Finite-Element Method. IEEE Transactions on Magnetics, 2013, 49, 530-535.	2.1	10
154	An adaptive degrees-of-freedom finite-element method for transient magnetic field analysis. IEEE Transactions on Magnetics, 2013, 49, 5724-5729.	2.1	7
155	A transient finite element method for power electronic driven electric machines. , 2013, , .		0
156	Starting response time dynamic digital simulation of DCT clutch BLDC motor. , 2013, , .		0
157	A convenient algorithm for circuit parameters of eddy-current field based on circuit-field coupling formulation. , 2013, , .		0
158	Numerical Investigation of Magnetic Resonant Coupling Technique in Inter-Chip Communication via Electromagnetics-TCAD Coupled Simulation. IEEE Transactions on Magnetics, 2012, 48, 4253-4256.	2.1	1
159	An Adaptive Mesh Method in Transient Finite Element Analysis of Magnetic Field Using a Novel Error Estimator. IEEE Transactions on Magnetics, 2012, 48, 4160-4163.	2.1	8
160	A Characteristic Galerkin Method for Eddy-Current Field Analysis in High-Speed Rotating Solid Conductors. IEEE Transactions on Magnetics, 2012, 48, 4634-4637.	2.1	4
161	An Efficient Parameterized Mesh Method for Large Shape Variation in Optimal Designs of Electromagnetic Devices. IEEE Transactions on Magnetics, 2012, 48, 4507-4510.	2.1	8
162	Design Optimization of Magnetic Gears Using Mesh Adjustable Finite-Element Algorithm for Improved Torque. IEEE Transactions on Magnetics, 2012, 48, 4156-4159.	2.1	37

#	Article	IF	CITATIONS
163	A Post-Assembly Magnetization Method of Direct-Start Interior Permanent Magnet Synchronous Motors and Its Finite-Element Analysis of Transient Magnetic Field. IEEE Transactions on Magnetics, 2012, 48, 3238-3241.	2.1	16
164	Lateral and Angular Misalignments Analysis of a New PCB Circular Spiral Resonant Wireless Charger. IEEE Transactions on Magnetics, 2012, 48, 4522-4525.	2.1	86
165	Analysis of Wireless Power Transfer System Based on 3-D Finite-Element Method Including Displacement Current. IEEE Transactions on Magnetics, 2012, 48, 3692-3695.	2.1	16
166	Quantitative Design and Analysis of Relay Resonators in Wireless Power Transfer System. IEEE Transactions on Magnetics, 2012, 48, 4026-4029.	2.1	91
167	Reduction of Computing Time for Steady-State Solutions of Magnetic Field and Circuit Coupled Problems Using Time-Domain Finite-Element Method. IEEE Transactions on Magnetics, 2012, 48, 3363-3366.	2.1	16
168	Analysis and Optimization of Magnetically Coupled Resonators for Wireless Power Transfer. IEEE Transactions on Magnetics, 2012, 48, 4511-4514.	2.1	26
169	Study and Experimental Verification of a Rectangular Printed-Circuit-Board Wireless Transfer System for Low Power Devices. IEEE Transactions on Magnetics, 2012, 48, 3013-3016.	2.1	16
170	Analytical study and corresponding experiments for a new resonant magnetic charger with circular spiral coils. Journal of Applied Physics, 2012, 111, 07E704.	2.5	5
171	Design and Analysis of a Novel Targeted Magnetic Fluid Hyperthermia System for Tumor Treatment. IEEE Transactions on Magnetics, 2012, 48, 3262-3265.	2.1	21
172	A Novel Brushless Doubly Fed Generator for Wind Power Generation. IEEE Transactions on Magnetics, 2012, 48, 4172-4175.	2.1	38
173	Precise Magnetic Field Modeling Techniques of Rotary Machines Using Transient Finite-Element Method. IEEE Transactions on Magnetics, 2012, 48, 4192-4195.	2.1	5
174	Design and Analysis of Novel Focused Hyperthermia Devices. IEEE Transactions on Magnetics, 2012, 48, 3254-3257.	2.1	12
175	A Novel Hybrid Resonator for Wireless Power Delivery in Bio-Implantable Devices. IEEE Transactions on Magnetics, 2012, 48, 4518-4521.	2.1	18
176	Finite Element Analysis of 1 MW High Speed Wound-Rotor Synchronous Machine. IEEE Transactions on Magnetics, 2012, 48, 4650-4653.	2.1	26
177	A Generalized Multiconductor Transmission Line Model and Optimized Method for the Solution of the MTL Equations. International Journal of Antennas and Propagation, 2012, 2012, 1-7.	1.2	1
178	A novel magnetic levitated bearing system for Vertical Axis Wind Turbines (VAWT). Applied Energy, 2012, 90, 148-153.	10.1	54
179	A Local Discontinuous Galerkin Method for Eddy Current Field Analysis in High-Speed Moving Conductors. IEEE Transactions on Magnetics, 2012, 48, 251-254.	2.1	4
180	A Parameterized Mesh Generation and Refinement Method for Finite Element Parameter Sweeping Analysis of Electromagnetic Devices. IEEE Transactions on Magnetics, 2012, 48, 239-242.	2.1	17

#	Article	IF	CITATIONS
181	A Local Discontinuous Galerkin Method for Numerical Computation of Waveguide Eigenvalue Problems in Polar Coordinates. IEEE Transactions on Magnetics, 2012, 48, 255-258.	2.1	2
182	A Mesh-Insensitive Methodology for Magnetic Force Computation in Finite-Element Analysis. IEEE Transactions on Magnetics, 2012, 48, 287-290.	2.1	9
183	A Power-Balanced Time-Stepping Finite Element Method for Transient Magnetic Field Computation. IEEE Transactions on Magnetics, 2012, 48, 291-294.	2.1	9
184	A Sensitivity Analysis Method for Equivalent Parameter Extraction of Transient Magnetic Field With Internal Circuits. IEEE Transactions on Magnetics, 2012, 48, 295-298.	2.1	4
185	A Convenient Mesh Rotation Method of Finite Element Analysis Using Sub-Matrix Transformation Approach. IEEE Transactions on Magnetics, 2012, 48, 303-306.	2.1	8
186	A Position Detection Strategy for Sensorless Surface Mounted Permanent Magnet Motors at Low Speed Using Transient Finite-Element Analysis. IEEE Transactions on Magnetics, 2012, 48, 1003-1006.	2.1	5
187	Eddy Current Reduction in High-Speed Machines and Eddy Current Loss Analysis With Multislice Time-Stepping Finite-Element Method. IEEE Transactions on Magnetics, 2012, 48, 1007-1010.	2.1	50
188	Comparison Study of Finite Element Methods to Deal With Floating Conductors in Electric Field. IEEE Transactions on Magnetics, 2012, 48, 351-354.	2.1	8
189	Analysis of Wireless Energy Transmission for Implantable Device Based on Coupled Magnetic Resonance. IEEE Transactions on Magnetics, 2012, 48, 723-726.	2.1	35
190	Application of Multi-Stage Diagonally-Implicit Runge-Kutta Algorithm to Transient Magnetic Field Computation Using Finite Element Method. IEEE Transactions on Magnetics, 2012, 48, 279-282.	2.1	6
191	Polymer-bonded NiZn ferrite magnetic cores mixed with titanium (IV) isopropoxide (C12H28O4Ti). Journal of Applied Physics, 2011, 109, 07A514.	2.5	6
192	An advanced double-layer combined windings transverse flux system for thin strip induction heating. Journal of Applied Physics, 2011, 109, 07E511.	2.5	7
193	A Modified Tabu Search Method Applied to Inverse Problems. IEEE Transactions on Magnetics, 2011, 47, 1234-1237.	2.1	16
194	Finite-Element Analysis and Corresponding Experiments of Resonant Energy Transfer for Wireless Transmission Devices. IEEE Transactions on Magnetics, 2011, 47, 1074-1077.	2.1	16
195	Relay Effect of Wireless Power Transfer Using Strongly Coupled Magnetic Resonances. IEEE Transactions on Magnetics, 2011, 47, 1478-1481.	2.1	180
196	Numerical Analysis of Inverse Scattering in Microwave Imaging. IEEE Transactions on Magnetics, 2011, 47, 1482-1485.	2.1	2
197	Robust Optimization Using a Methodology Based on Cross Entropy Methods. IEEE Transactions on Magnetics, 2011, 47, 1286-1289.	2.1	11
198	A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging. IEEE Transactions on Magnetics, 2011, 47, 1522-1525.	2.1	162

#	Article	IF	CITATIONS
199	A Population-Based Incremental Learning Vector Algorithm for Multiobjective Optimal Designs. IEEE Transactions on Magnetics, 2011, 47, 1306-1309.	2.1	6
200	An Equivalent Parameter Extraction Method of Transient Electric Circuit and Magnetic Field Coupled Problems Based on Sensitivity Computation of System Equations. IEEE Transactions on Magnetics, 2011, 47, 2068-2075.	2.1	8
201	A Parameterized Mesh Technique for Finite Element Magnetic Field Computation and Its Application to Optimal Designs of Electromagnetic Devices. IEEE Transactions on Magnetics, 2011, 47, 2943-2946.	2.1	11
202	Quantitative Analysis of a Wireless Power Transfer Cell With Planar Spiral Structures. IEEE Transactions on Magnetics, 2011, 47, 3200-3203.	2.1	44
203	A Moving Mesh Embedded Algorithm in Finite Element Method for Optimal Design of Electromagnetic Devices. IEEE Transactions on Magnetics, 2011, 47, 2947-2950.	2.1	17
204	A Design Method of Magnetically Resonanting Wireless Power Delivery Systems for Bio-Implantable Devices. IEEE Transactions on Magnetics, 2011, 47, 3833-3836.	2.1	22
205	Performance Analysis of a Novel Magnetic-Geared Tubular Linear Permanent Magnet Machine. IEEE Transactions on Magnetics, 2011, 47, 3598-3601.	2.1	44
206	Analytical Design Study of a Novel Witricity Charger With Lateral and Angular Misalignments for Efficient Wireless Energy Transmission. IEEE Transactions on Magnetics, 2011, 47, 2616-2619.	2.1	52
207	Design and FEM Analysis of a New Distributed Vernier Traveling Wave Induction Heater for Heating Moving Thin Strips. IEEE Transactions on Magnetics, 2011, 47, 2612-2615.	2.1	5
208	Hysteresis Effects of Laminated Steel Materials on Detent Torque in Permanent Magnet Motors. IEEE Transactions on Magnetics, 2011, 47, 3594-3597.	2.1	16
209	Enhanced Acoustic Emission Detection Induced by Electromagnetic Stimulation With External Magnetic Field. IEEE Transactions on Magnetics, 2011, 47, 3284-3287.	2.1	6
210	Design and Analysis of a Novel Axial-Flux Electric Machine. IEEE Transactions on Magnetics, 2011, 47, 4368-4371.	2.1	33
211	Design and Comparison of Vernier Permanent Magnet Machines. IEEE Transactions on Magnetics, 2011, 47, 3280-3283.	2.1	110
212	Optimization of an 80 kW Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine Used for HEVs. IEEE Transactions on Magnetics, 2011, 47, 2399-2402.	2.1	18
213	FEM Simulations and Experiments for the Advanced Witricity Charger With Compound Nano-TiO\$_{2} Interlayers. IEEE Transactions on Magnetics, 2011, 47, 4449-4452.	2.1	12
214	A neural network combined with a three-dimensional finite element method applied to optimize eddy current and temperature distributions of traveling wave induction heating system. Journal of Applied Physics, 2011, 109, 07E522.	2.5	2
215	A novel resonant inductive magnetic coupling wireless charger with TiO2 compound interlayer. Journal of Applied Physics, 2011, 109, 07E502.	2.5	6
216	A Quantitative Comparative Analysis of a Novel Flux-Modulated Permanent-Magnet Motor for Low-Speed Drive. IEEE Transactions on Magnetics, 2010, 46, 127-134.	2.1	87

WEINONG FU

#	Article	IF	CITATIONS
217	Elimination of Nonphysical Solutions and Implementation of Adaptive Step Size Algorithm in Time-Stepping Finite-Element Method for Magnetic Field–Circuit–Motion Coupled Problems. IEEE Transactions on Magnetics, 2010, 46, 29-38.	2.1	31
218	A Novel Direct-Drive Dual-Structure Permanent Magnet Machine. IEEE Transactions on Magnetics, 2010, 46, 2036-2039.	2.1	57
219	Quantitative Comparison of Novel Vernier Permanent Magnet Machines. IEEE Transactions on Magnetics, 2010, 46, 2032-2035.	2.1	148
220	Transient Analysis of a Magnetic Gear Integrated Brushless Permanent Magnet Machine Using Circuit-Field-Motion Coupled Time-Stepping Finite Element Method. IEEE Transactions on Magnetics, 2010, 46, 2074-2077.	2.1	44
221	Design and Analysis of a Novel Traveling Wave Induction Heating System With Magnetic Slot Wedges for Heating Moving Thin Strips. IEEE Transactions on Magnetics, 2010, 46, 2175-2178.	2.1	6
222	Optimization of Permanent Magnet Surface Shapes of Electric Motors for Minimization of Cogging Torque Using FEM. IEEE Transactions on Magnetics, 2010, 46, 2478-2481.	2.1	74
223	Application of Shell Element Method to 3-D Finite-Element Computation of the Force on One Body in Contact With Others. IEEE Transactions on Magnetics, 2010, 46, 3893-3898.	2.1	4
224	A 2-Dimensional Finite-Element Method for Transient Magnetic Field Computation Taking Into Account Parasitic Capacitive Effects. IEEE Transactions on Applied Superconductivity, 2010, 20, 1869-1873.	1.7	5
225	Complexity Analysis of EEG Under Magnetic Stimulation at Acupoints. IEEE Transactions on Applied Superconductivity, 2010, 20, 1029-1032.	1.7	8
226	A comparative study between witricity and traditional inductive coupling in wireless energy transmission. , 2010, , .		2
227	Modeling and design of a wireless power transfer cell with planar spiral structures. , 2010, , .		2
228	Position detection of a dual-structure permanent magnet machine at low speed and standstill using transient finite element analysis. , 2010, , .		0
229	Optimal design of a focused hyperthermia device using finite element method. , 2010, , .		0
230	A direct circuit parameter extraction method of two-dimensional eddy-current magnetic field. , 2010, ,		1
231	A unified formulation of finite-element methods for 2-d and axisymmetric magnetic fields - Electric circuit cosimulation using matrix approach. , 2010, , .		0
232	Hysteresis effects on the detent torque in permanent magnet motors. , 2010, , .		1
233	A novel axial-flux electric machine for in-wheel gearless drive in plug-in hybrid electric vehicles. , 2010, , .		6

#	Article	lF	CITATIONS
235	Optimal design of energy transmission system for implantable device base on WiTricity. , 2010, , .		6
236	Improvement of accuracy in cogging torque computation in fractional-slot flux modulating permanent magnet machines. , 2010, , .		1
237	Magnetic design of transformers for 20kW charging stations of electrical vehicles. , 2010, , .		Ο
238	A sensorless position detection strategy for Surface Mounted permanent magnet motors at low speed using transient finite-element analysis. , 2010, , .		0
239	A novel method of modeling 2D magnetic properties of electrical steel sheet in electromagnetic devices. , 2010, , .		Ο
240	Finite element analysis and corresponding experiments of resonant energy transmission for wireless transmission devices using witricity. , 2010, , .		4
241	Moving least-square approximation based interface element with variable nodes for modeling sliding-interface in electric machines. , 2010, , .		Ο
242	An efficient mesh reconstruction method for optimizing the shapes of electromagnetic devices using finite element method. , 2010, , .		0
243	Design and field analysis of a magnetic gear integrated tubular linear permanent magnet machine. , 2010, , .		1
244	A Novel Solid-Rotor Induction Motor With Skewed Slits in Radial and Axial Directions and Its Performance Analysis Using Finite Element Method. IEEE Transactions on Applied Superconductivity, 2010, 20, 1089-1092.	1.7	25
245	Extension of the Concept of Windings in Magnetic Field—Electric Circuit Coupled Finite—Element Method. IEEE Transactions on Magnetics, 2010, 46, 2119-2123.	2.1	22
246	An Optimal Design Method for the Minimization of Cogging Torques of a Permanent Magnet Motor Using FEM and Genetic Algorithm. IEEE Transactions on Applied Superconductivity, 2010, 20, 861-864.	1.7	33
247	Dynamic Demagnetization Computation of Permanent Magnet Motors Using Finite Element Method With Normal Magnetization Curves. IEEE Transactions on Applied Superconductivity, 2010, 20, 851-855.	1.7	37
248	Time domain finite element analysis of transient transmission lines with and without branches. , 2010, , \cdot		0
249	Reduction of Numerical Errors of Time-Stepping Finite Element Analysis for Dynamic Simulation of Electric Machines. IEEE Transactions on Applied Superconductivity, 2010, 20, 1864-1868.	1.7	9
250	A flux-modulated low-speed motor with an improved structure and its performance analysis using finite-element method. , 2010, , .		1
251	Analysis for Magnetic Stimulation Effects on Acupoint. IEEE Transactions on Applied Superconductivity, 2010, 20, 802-805.	1.7	1
252	Error Estimation for the Computation of Force Using the Virtual Work Method on Finite Element Models. IEEE Transactions on Magnetics, 2009, 45, 1388-1391.	2.1	7

#	Article	IF	CITATIONS
253	Analytical Prediction of Cogging Torque in Surface-Mounted Permanent-Magnet Motors. IEEE Transactions on Magnetics, 2009, 45, 3296-3302.	2.1	27
254	Design of Position Detection Strategy of Sensorless Permanent Magnet Motors at Standstill Using Transient Finite-Element Analysis. IEEE Transactions on Magnetics, 2009, 45, 4668-4671.	2.1	11
255	An Interpolative Finite-Element Modeling and the Starting Process Simulation of a Large Solid Pole Synchronous Machine. IEEE Transactions on Magnetics, 2009, 45, 4605-4608.	2.1	22
256	Matrix Analysis of 2-D Eddy-Current Magnetic Fields. IEEE Transactions on Magnetics, 2009, 45, 3343-3350.	2.1	10
257	Modeling Magnetic Hysteresis Under DC-Biased Magnetization Using the Neural Network. IEEE Transactions on Magnetics, 2009, 45, 3958-3961.	2.1	25
258	An Efficient Two-Grid Finite-Element Method of 3-D Nonlinear Magnetic-Field Computation. IEEE Transactions on Magnetics, 2009, 45, 4797-4800.	2.1	4
259	Analysis and Solution on Squeak Noise of Small Permanent-Magnet DC Brush Motors in Variable Speed Applications. IEEE Transactions on Magnetics, 2009, 45, 4752-4755.	2.1	26
260	Complexity Analysis of Magnetic Stimulation at the Acupoint of Zusanli (St36) on EEG. IEEE Transactions on Magnetics, 2009, 45, 4829-4832.	2.1	7
261	Optimization of Array Magnetic Coil Design for Functional Magnetic Stimulation Based on Improved Genetic Algorithm. IEEE Transactions on Magnetics, 2009, 45, 4849-4852.	2.1	26
262	A Novel Crossed Traveling Wave Induction Heating System and Finite Element Analysis of Eddy Current and Temperature Distributions. IEEE Transactions on Magnetics, 2009, 45, 4777-4780.	2.1	19
263	Enhanced Nonlinear Algorithm for the Transient Analysis of Magnetic Field and Electric Circuit Coupled Problems. IEEE Transactions on Magnetics, 2009, 45, 701-706.	2.1	30
264	A Flexible Approach for Brush-Commutation Machine Simulation. IEEE Transactions on Magnetics, 2008, 44, 1542-1545.	2.1	11
265	A finite element method for transient analysis of power electronic motor drives including parasitic capacitive effect and external circuit. , 2008, , .		3
266	Parameter extraction of eddy-current magnetic field - circuit coupled problems using matrix analysis method. , 2008, , .		0
267	A general cosimulation approach for coupled field-circuit problems. IEEE Transactions on Magnetics, 2006, 42, 1051-1054.	2.1	76
268	A new nonlinear anisotropic model for soft magnetic materials. IEEE Transactions on Magnetics, 2006, 42, 963-966.	2.1	33
269	An Improved Nodal Method for Circuit and Multi-Slice Magnetic Field Coupled Finite Element Analysis. Electric Power Components and Systems, 2004, 32, 671-689.	1.8	5
270	A Dynamic Core Loss Model for Soft Ferromagnetic and Power Ferrite Materials in Transient Finite Element Analysis. IEEE Transactions on Magnetics, 2004, 40, 1318-1321.	2.1	323

#	Article	IF	CITATIONS
271	Numerical Modeling of Magnetic Devices. IEEE Transactions on Magnetics, 2004, 40, 1803-1809.	2.1	86
272	Magnetic Force Computation in Permanent Magnets Using a Local Energy Coordinate Derivative Method. IEEE Transactions on Magnetics, 2004, 40, 683-686.	2.1	33
273	Modeling of Solid Conductors in Two-Dimensional Transient Finite-Element Analysis and Its Application to Electric Machines. IEEE Transactions on Magnetics, 2004, 40, 426-434.	2.1	100
274	A Versatile Finite Element Model of Electric Machines. Electric Power Components and Systems, 2003, 31, 941-966.	1.8	4
275	A multislice coupled finite-element method with uneven slice length division for the simulation study of electric machines. IEEE Transactions on Magnetics, 2003, 39, 1566-1569.	2.1	14
276	Integrated RBF network based estimation strategy of the output characteristics of brushless DC motors. IEEE Transactions on Magnetics, 2002, 38, 1033-1036.	2.1	6
277	Estimation of eddy-current loss in permanent magnets of electric motors using network-field coupled multislice time-stepping finite-element method. IEEE Transactions on Magnetics, 2002, 38, 1225-1228.	2.1	18
278	An effective method to reduce the computing time of nonlinear time-stepping finite-element magnetic field computation. IEEE Transactions on Magnetics, 2002, 38, 441-444.	2.1	18
279	A dynamic model of the disk drive spindle motor and its applications. IEEE Transactions on Magnetics, 2002, 38, 973-976.	2.1	15
280	Design and analysis of practical induction motors. IEEE Transactions on Magnetics, 2001, 37, 3663-3667.	2.1	10
281	Analysis of indirect temperature-rise tests of induction machines using time stepping finite element method. IEEE Transactions on Energy Conversion, 2001, 16, 55-60.	5.2	25
282	Performance analysis of brushless DC motors including features of the control loop in the finite element modeling. IEEE Transactions on Magnetics, 2001, 37, 3370-3374.	2.1	22
283	A novel approach to circuit-field-torque coupled time stepping finite element modeling of electric machines. IEEE Transactions on Magnetics, 2000, 36, 1886-1889.	2.1	32
284	Inclusion of interbar currents in a network-field coupled time-stepping finite-element model of skewed-rotor induction motors. IEEE Transactions on Magnetics, 1999, 35, 4218-4225.	2.1	40
285	Solution of a 3-D complex finite element model of skewed rotor induction motors using an iterative method. IEEE Transactions on Energy Conversion, 1999, 14, 1247-1252.	5.2	5
286	Direct modeling of the starting process of skewed rotor induction motors using a multi-slice technique. IEEE Transactions on Energy Conversion, 1999, 14, 1253-1258.	5.2	13
287	Thermal study of induction motors by phantom loading using multi-slice time stepping finite element modeling. IEEE Transactions on Magnetics, 1999, 35, 1606-1609.	2.1	2
288	Generation and rotation of 3-D finite element mesh for skewed rotor induction motors using extrusion technique. IEEE Transactions on Magnetics, 1999, 35, 1266-1269.	2.1	9

#	Article	IF	CITATIONS
289	REVIEW AND FUTURE APPLICATION OF FINITE ELEMENT METHODS IN INDUCTION MOTORS. Electric Power Components and Systems, 1998, 26, 111-125.	0.1	35
290	Estimation of stray losses of skewed rotor induction motors using coupled 2-D and 3-D time stepping finite element methods. IEEE Transactions on Magnetics, 1998, 34, 3102-3105.	2.1	43
291	Application of automatic choice of step size for time stepping finite element method to induction motors. IEEE Transactions on Magnetics, 1997, 33, 1370-1373.	2.1	22
292	An incremental method for studying the steady state performance of induction motors using time stepping finite element model. IEEE Transactions on Magnetics, 1997, 33, 1374-1377.	2.1	8
293	A comprehensive approach to the solution of direct-coupled multislice model of skewed rotor induction motors using time-stepping eddy-current finite element method. IEEE Transactions on Magnetics, 1997, 33, 2265-2273.	2.1	57
294	Solution of a 3-D complex finite element model of skewed rotor induction motors using an iterative method. , 0, , .		3
295	Direct modeling of starting process of skewed induction motors using a multi-slice technique. , 0, , .		1
296	Analysis of indirect temperature-rise tests of induction machines using time stepping finite element method. , 0, , .		1