
Carlos Vicario-AbejÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5774472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Effects of BDNF and NT-3 on the Dendrites and Presynaptic Boutons of Developing Olfactory Bulb GABAergic Interneurons In Vitro. Cellular and Molecular Neurobiology, 2022, 42, 1399-1417.	3.3	3
2	SoxD genes are required for adult neural stem cell activation. Cell Reports, 2022, 38, 110313.	6.4	16
3	Tbr1 Misexpression Alters Neuronal Development in the Cerebral Cortex. Molecular Neurobiology, 2022, 59, 5750-5765.	4.0	7
4	Generation of a set of isogenic iPSC lines carrying all APOE genetic variants (Æ2/Æ3/Æ4) and knock-out for the study of APOE biology in health and disease. Stem Cell Research, 2021, 52, 102180.	0.7	1
5	Neural Stem Cells in the Adult Olfactory Bulb Core Generate Mature Neurons in Vivo. Stem Cells, 2021, 39, 1253-1269.	3.2	16
6	A collection of three integration-free iPSCs derived from old male and female healthy subjects. Stem Cell Research, 2020, 42, 101663.	0.7	2
7	A collection of four integration-free iPSC lines derived from diagnosed sporadic Alzheimer's disease patients with different APOE alleles. Stem Cell Research, 2019, 39, 101522.	0.7	1
8	An integration-free iPSC line, ICCSICi007-A, derived from a female Alzheimer's disease patient with the APOE-Îμ4/Îμ4 alleles. Stem Cell Research, 2019, 41, 101588.	0.7	1
9	Generation of an integration-free iPSC line, ICCSICi006-A, derived from a male Alzheimer's disease patient carrying the PSEN1-G206D mutation. Stem Cell Research, 2019, 40, 101574.	0.7	2
10	Generation of an integration-free iPSC line, ICCSICi005-A, derived from a Parkinson's disease patient carrying the L444P mutation in the GBA1 gene. Stem Cell Research, 2019, 40, 101578.	0.7	1
11	A collection of integration-free iPSCs derived from Parkinson's disease patients carrying mutations in the GBA1 gene. Stem Cell Research, 2019, 38, 101482.	0.7	3
12	Cholesterol and multilamellar bodies: Lysosomal dysfunction in <i>GBA</i> -Parkinson disease. Autophagy, 2018, 14, 717-718.	9.1	49
13	<i>Helios</i> expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development (Cambridge), 2017, 144, 1566-1577.	2.5	17
14	N370S <i>â€GBA1</i> mutation causes lysosomal cholesterol accumulation in Parkinson's disease. Movement Disorders, 2017, 32, 1409-1422.	3.9	86
15	In Vitro Evaluation of Biocompatibility of Uncoated Thermally Reduced Graphene and Carbon Nanotube-Loaded PVDF Membranes with Adult Neural Stem Cell-Derived Neurons and Glia. Frontiers in Bioengineering and Biotechnology, 2016, 4, 94.	4.1	29
16	IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain. Frontiers in Neuroscience, 2016, 10, 52.	2.8	199
17	Brain Insulin-Like Growth Factor-I Directs the Transition from Stem Cells to Mature Neurons During Postnatal/Adult Hippocampal Neurogenesis. Stem Cells, 2016, 34, 2194-2209.	3.2	40
18	Thermally reduced graphene is a permissive material for neurons and astrocytes and de novo neurogenesis in the adult olfactory bulb inÂvivo. Biomaterials, 2016, 82, 84-93.	11.4	42

#	Article	IF	CITATIONS
19	Role of Nurr1 in the Generation and Differentiation of Dopaminergic Neurons from Stem Cells. Neurotoxicity Research, 2016, 30, 14-31.	2.7	20
20	Nurr1 blocks the mitogenic effect of <scp>FGF</scp> â€2 and <scp>EGF</scp> , inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergicâ€ <scp>GABA</scp> ergic neuronal phenotypes. Developmental Neurobiology, 2015, 75, 823-841.	3.0	26
21	Pax6 Is Essential for the Maintenance and Multi-Lineage Differentiation of Neural Stem Cells, and for Neuronal Incorporation into the Adult Olfactory Bulb. Stem Cells and Development, 2014, 23, 2813-2830.	2.1	45
22	Transcriptional Regulation of Olfactory Bulb Neurogenesis. Anatomical Record, 2013, 296, 1364-1382.	1.4	28
23	A Global Transcriptome Analysis Reveals Molecular Hallmarks of Neural Stem Cell Death, Survival, and Differentiation in Response to Partial FGF-2 and EGF Deprivation. PLoS ONE, 2013, 8, e53594.	2.5	28
24	Role of Adrenomedullin in the Growth and Differentiation of Stem and Progenitor Cells. International Review of Cell and Molecular Biology, 2012, 297, 175-234.	3.2	7
25	<i>Helios</i> Transcription Factor Expression Depends on <i>Gsx2</i> and <i>Dlx1&2</i> Function in Developing Striatal Matrix Neurons. Stem Cells and Development, 2012, 21, 2239-2251.	2.1	31
26	L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: Insights into regulation and function. Neurobiology of Disease, 2012, 48, 271-281.	4.4	59
27	The Homeobox Gene Gsx2 Regulates the Self-Renewal and Differentiation of Neural Stem Cells and the Cell Fate of Postnatal Progenitors. PLoS ONE, 2012, 7, e29799.	2.5	20
28	The T-box brain 1 (Tbr1) transcription factor inhibits astrocyte formation in the olfactory bulb and regulates neural stem cell fate. Molecular and Cellular Neurosciences, 2011, 46, 108-121.	2.2	47
29	Lack of adrenomedullin affects growth and differentiation of adult neural stem/progenitor cells. Cell and Tissue Research, 2010, 340, 1-11.	2.9	24
30	Selective Vulnerability in Striosomes and in the Nigrostriatal Dopaminergic Pathway After Methamphetamine Administration. Neurotoxicity Research, 2010, 18, 48-58.	2.7	75
31	Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling. Neural Development, 2010, 5, 21.	2.4	28
32	Maintenance of Undifferentiated State and Self-Renewal of Embryonic Neural Stem Cells by Polycomb Protein Ring1B. Stem Cells, 2009, 27, 1559-1570.	3.2	57
33	ICFâ€I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. European Journal of Neuroscience, 2009, 30, 742-755.	2.6	114
34	Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells. Neuroscience, 2009, 162, 39-54.	2.3	42
35	Retinal and olfactory bulb precursor cells show distinct responses to FGF-2 and laminin. Cell Biology International, 2007, 31, 752-758.	3.0	5
36	Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells. Development (Cambridge), 2006, 133, 4367-4379.	2.5	57

#	Article	IF	CITATIONS
37	Modulation of the PI 3-kinase–Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells. Journal of Cell Science, 2006, 119, 2739-2748.	2.0	128
38	Absence of hematopoiesis from transplanted olfactory bulb neural stem cells. European Journal of Neuroscience, 2004, 19, 505-512.	2.6	40
39	Longâ€Term Culture of Hippocampal Neurons. Current Protocols in Neuroscience, 2004, 26, Unit 3.2.	2.6	16
40	Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Experimental Cell Research, 2004, 297, 313-328.	2.6	75
41	Mice lacking IGF-I and LIF have motoneuron deficits in brain stem nuclei. NeuroReport, 2004, 15, 2769-72.	1.2	14
42	Developmental cooperation of leukemia inhibitory factor and insulin-like growth factor I in mice is tissue-specific and essential for lung maturation involving the transcription factors Sp3 and TTF-1. Mechanisms of Development, 2003, 120, 349-361.	1.7	33
43	Locally Born Olfactory Bulb Stem Cells Proliferate in Response to Insulin-Related Factors and Require Endogenous Insulin-Like Growth Factor-I for Differentiation into Neurons and Glia. Journal of Neuroscience, 2003, 23, 895-906.	3.6	122
44	Role of neurotrophins in central synapse formation and stabilization. Nature Reviews Neuroscience, 2002, 3, 965-974.	10.2	227
45	Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons. European Journal of Neuroscience, 2001, 13, 1273-1282.	2.6	75
46	Targeted Genomic Disruption of H- ras and N- ras , Individually or in Combination, Reveals the Dispensability of Both Loci for Mouse Growth and Development. Molecular and Cellular Biology, 2001, 21, 1444-1452.	2.3	265
47	Hippocampal stem cells differentiate into excitatory and inhibitory neurons. European Journal of Neuroscience, 2000, 12, 677-688.	2.6	83
48	Survival and synaptogenesis of hippocampal neurons without NMDA receptor function in culture. European Journal of Neuroscience, 1998, 10, 2192-2198.	2.6	29
49	Transgenic mice for interleukin 3 develop motor neuron degeneration associated with autoimmune reaction against spinal cord motor neurons. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11354-11359.	7.1	41
50	Neurotrophins Induce Formation of Functional Excitatory and Inhibitory Synapses between Cultured Hippocampal Neurons. Journal of Neuroscience, 1998, 18, 7256-7271.	3.6	327
51	Lactate spares glucose as a metabolic fuel in neurons and astrocytes from primary culture. Neuroscience Research, 1996, 26, 369-376.	1.9	53
52	Cerebellar precursors transplanted to the neonatal dentate gyrus express features characteristic of hippocampal neurons. Journal of Neuroscience, 1995, 15, 6351-6363.	3.6	105
53	Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron, 1995, 15, 105-114.	8.1	295
54	Regulation of Lactate Metabolism by Albumin in Rat Neurons and Astrocytes from Primary Culture. Pediatric Research, 1993, 34, 709-715.	2.3	56

#	Article	IF	CITATIONS
55	Metabolism of Lactate in the Rat Brain During the Early Neonatal Period. Journal of Neurochemistry, 1992, 59, 32-40.	3.9	35
56	Regulation of lipogenesis from lactate in isolated cells from early neonatal rat brain. Biochemical Society Transactions, 1991, 19, 140S-140S.	3.4	0
57	The fate of lactate in isolated cells from early neonatal rat brain. Comparison with glucose and 3-hydroxybutyrate. Biochemical Society Transactions, 1991, 19, 141S-141S.	3.4	2
58	Lactate Utilization by Isolated Cells from Early Neonatal Rat Brain. Journal of Neurochemistry, 1991, 57, 1700-1707.	3.9	87
59	Effect of Postnatal Hypoxia on Ammonia Metabolism during the Early Neonatal Period in the Rat. Neonatology, 1990, 57, 119-125.	2.0	8
60	Fuel Supply to the Brain During the Early Postnatal Period. , 1990, , 175-194.		14
61	Morphological Diversity of Calretinin Interneurons Generated From Adult Mouse Olfactory Bulb Core Neural Stem Cells. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	0