Shenghu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5773724/publications.pdf Version: 2024-02-01

SHENCHU ZHOU

#	Article	IF	CITATIONS
1	Fineâ€tuning the (2 <i>S</i>)â€naringenin synthetic pathway using an iterative highâ€throughput balancing strategy. Biotechnology and Bioengineering, 2019, 116, 1392-1404.	3.3	76
2	Obtaining a Panel of Cascade Promoter-5′-UTR Complexes in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 1065-1075.	3.8	74
3	Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology. ACS Synthetic Biology, 2021, 10, 911-922.	3.8	67
4	Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metabolic Engineering, 2021, 67, 41-52.	7.0	63
5	Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor. Nucleic Acids Research, 2020, 48, 10602-10613.	14.5	61
6	Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microbial Cell Factories, 2019, 18, 74.	4.0	59
7	The application of powerful promoters to enhance gene expression in industrial microorganisms. World Journal of Microbiology and Biotechnology, 2017, 33, 23.	3.6	31
8	Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in <i>Escherichia coli</i> . Journal of Microbiology and Biotechnology, 2020, 30, 1574-1582.	2.1	31
9	Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis. Applied Microbiology and Biotechnology, 2016, 100, 10443-10452.	3.6	29
10	Precise Prediction of Promoter Strength Based on a De Novo Synthetic Promoter Library Coupled with Machine Learning. ACS Synthetic Biology, 2022, 11, 92-102.	3.8	25
11	Engineering enzymatic cascades for the efficient biotransformation of eugenol and taxifolin to silybin and isosilybin. Green Chemistry, 2019, 21, 1660-1667.	9.0	24
12	Biosynthesis of adipic acid by a highly efficient induction-free system in Escherichia coli. Journal of Biotechnology, 2020, 314-315, 8-13.	3.8	23
13	Strategies for directed and adapted evolution as part of microbial strain engineering. Journal of Chemical Technology and Biotechnology, 2019, 94, 366-376.	3.2	18
14	Engineering the Reductive TCA Pathway to Dynamically Regulate the Biosynthesis of Adipic Acid in <i>Escherichia coli</i> . ACS Synthetic Biology, 2021, 10, 632-639.	3.8	18
15	Microbial cell factories for the production of flavonoids–barriers and opportunities. Bioresource Technology, 2022, 360, 127538.	9.6	17
16	The 3-ketoacyl-CoA thiolase: an engineered enzyme for carbon chain elongation of chemical compounds. Applied Microbiology and Biotechnology, 2020, 104, 8117-8129.	3.6	16
17	Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnology Advances, 2020, 43, 107575.	11.7	14
18	Biosensor-Based Multigene Pathway Optimization for Enhancing the Production of Glycolate. Applied and Environmental Microbiology, 2021, 87, e0011321.	3.1	8

Shenghu Zhou

#	Article	IF	CITATIONS
19	Engineering a fumaric acid-responsive two-component biosensor for dynamic range improvement in Escherichia coli. Systems Microbiology and Biomanufacturing, 2022, 2, 533-541.	2.9	6
20	Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level. Critical Reviews in Biotechnology, 2023, 43, 646-663.	9.0	6
21	Computer-aided engineering of adipyl-CoA synthetase for enhancing adipic acid synthesis. Biotechnology Letters, 2020, 42, 2693-2701.	2.2	4
22	Claisen Condensation Reaction Mediated Pimelate Biosynthesis via the Reverse Adipateâ€Degradation Pathway and Its Isoenzymes. ChemBioChem, 2022, 23, .	2.6	2