Hongping He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5773432/publications.pdf

Version: 2024-02-01

245 papers 14,420 citations

64 h-index 25787 108 g-index

249 all docs 249 docs citations

times ranked

249

11916 citing authors

#	Article	IF	CITATIONS
1	Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Applied Catalysis B: Environmental, 2019, 255, 117739.	20.2	687
2	Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Journal of Hazardous Materials, 2009, 166, 821-829.	12.4	446
3	Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 2016, 123, 239-258.	5.2	389
4	Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of Hazardous Materials, 2010, 173, 614-621.	12.4	327
5	Structure of organoclaysâ€"an X-ray diffraction and thermogravimetric analysis study. Journal of Colloid and Interface Science, 2004, 277, 116-120.	9.4	303
6	Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 2006, 31, 262-271.	5.2	285
7	Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides. Journal of Colloid and Interface Science, 2007, 305, 150-158.	9.4	258
8	Modification of Wyoming Montmorillonite Surfaces Using a Cationic Surfactant. Langmuir, 2005, 21, 8675-8680.	3.5	251
9	Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. Journal of Colloid and Interface Science, 2005, 288, 171-176.	9.4	236
10	Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 2010, 48, 67-72.	5.2	226
11	Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Applied Clay Science, 2018, 159, 83-93.	5.2	218
12	Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 2005, 53, 287-293.	1.3	187
13	Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite. Journal of Colloid and Interface Science, 2018, 530, 704-713.	9.4	185
14	Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO 4 at neutral pH. Applied Catalysis B: Environmental, 2017, 212, 50-58.	20.2	182
15	Functionalized layered double hydroxides for innovative applications. Materials Horizons, 2020, 7, 715-745.	12.2	171
16	Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3â^'xTixO4 (0â‰ x â‰ c .78) at neutral pH values. Applied Catalysis B: Environmental, 2009, 89, 527-535.	20.2	170
17	Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. Journal of Colloid and Interface Science, 2005, 286, 239-244.	9.4	168
18	A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. Journal of Colloid and Interface Science, 2008, 324, 142-149.	9.4	167

#	Article	IF	CITATIONS
19	Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: Catalyst characterization, performance and degradation products. Water Research, 2012, 46, 4633-4644.	11.3	164
20	Changes in Structure, Morphology, Porosity, and Surface Activity of Mesoporous Halloysite Nanotubes Under Heating. Clays and Clay Minerals, 2012, 60, 561-573.	1.3	162
21	Gaseous Elemental Mercury Capture from Flue Gas Using Magnetic Nanosized (Fe _{3-<i>x</i>} Mn _{<i>x</i>}) _{1-Î} O ₄ . Environmental Science & Technology, 2011, 45, 1540-1546.	10.0	161
22	Heterogeneous photo-Fenton degradation of bisphenol A over Ag/AgCl/ferrihydrite catalysts under visible light. Chemical Engineering Journal, 2018, 346, 567-577.	12.7	157
23	CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: The important role of CNTs in accelerating Fe(III)/Fe(II) cycling. Applied Catalysis B: Environmental, 2020, 270, 118891.	20.2	152
24	Microstructure of HDTMA ⁺ -modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 2006, 54, 689-696.	1.3	149
25	Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst characterization, performance and reaction mechanism. Applied Catalysis B: Environmental, 2016, 182, 476-484.	20.2	149
26	Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 2014, 100, 22-28.	5.2	136
27	Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China. Atmospheric Environment, 2008, 42, 1961-1969.	4.1	135
28	Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system. Applied Clay Science, 2013, 80-81, 407-412.	5.2	134
29	Silylation of clay mineral surfaces. Applied Clay Science, 2013, 71, 15-20.	5.2	134
30	FTIR investigation of CTAB–Al–montmorillonite complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 1030-1036.	3.9	133
31	The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: From the perspective of hydroxyl radical generation. Applied Catalysis B: Environmental, 2014, 150-151, 612-618.	20.2	130
32	Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite. Applied Catalysis B: Environmental, 2018, 239, 280-289.	20.2	123
33	Sorption of perfluorooctane sulfonate on organo-montmorillonites. Chemosphere, 2010, 78, 688-694.	8.2	119
34	Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite. Chemosphere, 2016, 144, 1148-1155.	8.2	118
35	Heterogeneous activation of Oxone by substituted magnetites Fe3â^'xMxO4 (Cr, Mn, Co, Ni) for degradation of Acid Orange II at neutral pH. Journal of Molecular Catalysis A, 2015, 398, 86-94.	4.8	114
36	Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 515-525.	3.9	112

3

#	Article	IF	Citations
37	Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 2016, 283, 880-888.	12.7	112
38	Elemental Mercury Capture from Flue Gas by Magnetic Mnâ€"Fe Spinel: Effect of Chemical Heterogeneity. Industrial & Description of Chemical Heterogeneity. Industrial & Description of Chemical Heterogeneity. Industrial & Description of Chemical Heterogeneity.	3.7	111
39	The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 2012, 191, 177-184.	12.7	110
40	The decolorization of Acid Orange II in non-homogeneous Fenton reaction catalyzed by natural vanadium–titanium magnetite. Journal of Hazardous Materials, 2010, 181, 112-120.	12.4	109
41	Grafting of montmorillonite with different functional silanes via two different reaction systems. Journal of Colloid and Interface Science, 2007, 313, 268-273.	9.4	106
42	Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay. Journal of Colloid and Interface Science, 2007, 311, 347-353.	9.4	105
43	Synthesis and characterization of delaminated iron-pillared clay with meso–microporous structure. Microporous and Mesoporous Materials, 2006, 88, 8-15.	4.4	104
44	Conformation of Surfactant Molecules in the Interlayer of Montmorillonite Studied by ¹³ C MAS NMR. Clays and Clay Minerals, 2004, 52, 350-356.	1.3	100
45	Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 122-129.	3.9	100
46	Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chemical Geology, 2019, 525, 210-217.	3.3	100
47	A novel organoclay with antibacterial activity prepared from montmorillonite and Chlorhexidini Acetas. Journal of Colloid and Interface Science, 2006, 297, 235-243.	9.4	98
48	The remarkable effect of vanadium doping on the adsorption and catalytic activity of magnetite in the decolorization of methylene blue. Applied Catalysis B: Environmental, 2010, 97, 151-159.	20.2	98
49	The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. Journal of Hazardous Materials, 2012, 199-200, 247-254.	12.4	95
50	Microwave-Assisted Synthesis of Fe ₃ O ₄ Nanocrystals with Predominantly Exposed Facets and Their Heterogeneous UVA/Fenton Catalytic Activity. ACS Applied Materials & Long; Interfaces, 2017, 9, 29203-29212.	8.0	91
51	Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclayâ€"The XRD and TG study. Journal of Colloid and Interface Science, 2007, 307, 50-55.	9.4	89
52	Effect of acid activation of palygorskite on their toluene adsorption behaviors. Applied Clay Science, 2018, 159, 60-67.	5.2	83
53	Influence of cationic surfactant removal on the thermal stability of organoclays. Journal of Colloid and Interface Science, 2006, 295, 202-208.	9.4	81
54	Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters. Hydrometallurgy, 2019, 185, 149-161.	4.3	76

#	Article	IF	CITATIONS
55	Molecular Simulation of the Interlayer Structure and the Mobility of Alkyl Chains in HDTMA+/Montmorillonite Hybrids. Journal of Physical Chemistry B, 2005, 109, 13301-13306.	2.6	75
56	The valence and site occupancy of substituting metals in magnetite spinel structure Fe3â^'xMxO4 (MÂ=ÂCr, Mn, Co and Ni) and their influence on thermal stability: An XANES and TG-DSC investigation. Solid State Sciences, 2013, 15, 115-122.	3.2	75
57	Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: An in situ ATR-FTIR/2D-COS study. Chemical Geology, 2018, 477, 12-21.	3.3	75
58	Nanomaterials based upon silylated layered double hydroxides. Applied Surface Science, 2009, 255, 4334-4340.	6.1	73
59	Preparation and characterization of zwitterionic surfactant-modified montmorillonites. Journal of Colloid and Interface Science, 2011, 360, 386-392.	9.4	70
60	A comparative study about the effects of isomorphous substitution of transition metals (Ti, Cr, Mn,) Tj ETQq0 0 29-34.	0 rgBT /Ον 4.8	verlock 10 Tf 70
61	Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by TiCl4 hydrolysis method. Microporous and Mesoporous Materials, 2006, 93, 240-247.	4.4	68
62	Synthesis and characterization of layered double hydroxides with a high aspect ratio. Journal of Solid State Chemistry, 2006, 179, 708-715.	2.9	68
63	Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites. Science Bulletin, 2003, 48, 368-372.	1.7	67
64	Nanogeosciences: Research History, Current Status, and Development Trends. Journal of Nanoscience and Nanotechnology, 2017, 17, 5930-5965.	0.9	67
65	Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6356-6362.	10.3	67
66	Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications. Progress in Materials Science, 2020, 109, 100631.	32.8	66
67	In situ synthesis of surfactant/silane-modified hydrotalcites. Journal of Colloid and Interface Science, 2008, 319, 498-504.	9.4	64
68	The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides: Catalytic deactivation and regeneration. Applied Surface Science, 2019, 464, 287-293.	6.1	64
69	and MAS NMR spectra of mullites from different kaolinites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 1061-1064.	3.9	62
70	Silylation of montmorillonite surfaces: Dependence on solvent nature. Journal of Colloid and Interface Science, 2013, 391, 16-20.	9.4	59
71	Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution. Geochimica Et Cosmochimica Acta, 2018, 228, 259-274.	3.9	58
72	Selective loading of 5-fluorouracil in the interlayer space of methoxy-modified kaolinite for controlled release. Applied Clay Science, 2018, 159, 102-106.	5.2	58

#	Article	IF	Citations
73	Degradation of Methylene Blue by Heterogeneous Fenton Reaction Using Titanomagnetite at Neutral pH Values: Process and Affecting Factors. Industrial & Engineering Chemistry Research, 2009, 48, 9915-9921.	3.7	57
74	A X-ray photoelectron spectroscopy study of HDTMAB distribution within organoclays. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 1180-1188.	3.9	55
75	Natural Magnetite: an efficient catalyst for the degradation of organic contaminant. Scientific Reports, 2015, 5, 10139.	3.3	55
76	Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of formaldehyde: Dispersion, microstructure, and catalytic performance. Applied Clay Science, 2018, 161, 265-273.	5.2	55
77	Influences of pretreatment temperature on the surface silylation of diatomaceous amorphous silica with trimethylchlorosilane. Journal of Non-Crystalline Solids, 2006, 352, 3762-3771.	3.1	54
78	Application of near infrared spectroscopy for the determination of adsorbed p-nitrophenol on HDTMA organoclayâ€"implications for the removal of organic pollutants from water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 835-841.	3.9	54
79	The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: In interfacial view. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 28-35.	4.7	54
80	Efficiency of Fe–montmorillonite on the removal of Rhodamine B and hexavalent chromium from aqueous solution. Applied Clay Science, 2016, 120, 9-15.	5.2	53
81	Surface silylation of natural mesoporous/macroporous diatomite for adsorption of benzene. Journal of Colloid and Interface Science, 2015, 448, 545-552.	9.4	52
82	Core–shell structured iron nanoparticles well dispersed on montmorillonite. Journal of Magnetism and Magnetic Materials, 2009, 321, 3515-3519.	2.3	51
83	Uranium re-adsorption on uranium mill tailings and environmental implications. Journal of Hazardous Materials, 2021, 416, 126153.	12.4	51
84	Novel intercalation mechanism of zwitterionic surfactant modified montmorillonites. Applied Clay Science, 2017, 141, 265-271.	5.2	50
85	TEM, XRD, and thermal stability of adsorbed paranitrophenol on DDOAB organoclay. Journal of Colloid and Interface Science, 2007, 311, 24-37.	9.4	48
86	Locking effect: A novel insight in the silylation of montmorillonite surfaces. Materials Chemistry and Physics, 2012, 136, 292-295.	4.0	48
87	Thermal degradation of organic matter in the interlayer clay–organic complex: A TG-FTIR study on a montmorillonite/12-aminolauric acid system. Applied Clay Science, 2013, 80-81, 398-406.	5.2	48
88	Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: The effect of Fe on catalytic activity. Applied Clay Science, 2016, 132-133, 96-104.	5.2	47
89	The distinct effects of substitution and deposition of Ag in perovskite LaCoO3 on the thermally catalytic oxidation of toluene. Applied Surface Science, 2019, 489, 905-912.	6.1	47
90	Effect of surfactant concentration on the stacking modes of organo-silylated layered double hydroxides. Applied Clay Science, 2009, 45, 262-269.	5.2	46

#	Article	IF	Citations
91	Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole. Scientific Reports, 2015, 5, 8870.	3.3	46
92	A microstructural study of acid-activated montmorillonite from Choushan, China. Clay Minerals, 2002, 37, 337-344.	0.6	44
93	<i>In situ</i> synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes. Chemical Communications, 2019, 55, 2644-2647.	4.1	44
94	Synthesis and infrared spectroscopic characterization of selected layered double hydroxides containing divalent Ni and Co. Materials Chemistry and Physics, 2008, 112, 869-875.	4.0	43
95	Montmorillonite as a multifunctional adsorbent can simultaneously remove crystal violet, cetyltrimethylammonium, and 2-naphthol from water. Applied Clay Science, 2014, 88-89, 33-38.	5.2	43
96	Preparation of surface-functionalized porous clay heterostructures via carbonization of soft-template and their adsorption performance for toluene. Applied Surface Science, 2016, 363, 113-121.	6.1	43
97	Adsorption of phenol, phosphate and Cd(II) by inorganic–organic montmorillonites: A comparative study of single and multiple solute. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 63-71.	4.7	43
98	Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties. Applied Clay Science, 2017, 148, 103-108.	5.2	43
99	Surface Heterogeneity of SiO ₂ Polymorphs: An XPS Investigation of α-Quartz and α-Cristobalite. Journal of Physical Chemistry C, 2014, 118, 26249-26257.	3.1	41
100	Visible light assisted Fenton-like degradation of Orange II on Ni 3 Fe/Fe 3 O 4 magnetic catalyst prepared from spent FeNi layered double hydroxide. Journal of Molecular Catalysis A, 2016, 415, 9-16.	4.8	41
101	Influence of interlayer species on the thermal characteristics of montmorillonite. Applied Clay Science, 2017, 135, 129-135.	5.2	41
102	An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nature Communications, 2021, 12, 6611.	12.8	41
103	The distinct effects of Mn substitution on the reactivity of magnetite in heterogeneous Fenton reaction and Pb(II) adsorption. Journal of Colloid and Interface Science, 2014, 426, 181-189.	9.4	40
104	Degradation of 2,4-dichlorophenol using palygorskite-supported bimetallic Fe/Ni nanocomposite as a heterogeneous catalyst. Applied Clay Science, 2019, 168, 276-286.	5 . 2	40
105	High-capacity loading of 5-fluorouracil on the methoxy-modified kaolinite. Applied Clay Science, 2014, 100, 60-65.	5.2	39
106	From used montmorillonite to carbon monolayer–montmorillonite nanocomposites. Applied Clay Science, 2014, 100, 112-117.	5.2	39
107	Simultaneous adsorption of Cd(<scp>ii</scp>) and phosphate on Al ₁₃ pillared montmorillonite. RSC Advances, 2015, 5, 77227-77234.	3.6	39
108	Keggin-Al 30 pillared montmorillonite. Microporous and Mesoporous Materials, 2017, 242, 256-263.	4.4	39

#	Article	IF	Citations
109	Raman spectroscopic study of organo-montmorillonites. Journal of Raman Spectroscopy, 2004, 35, 316-323.	2.5	38
110	The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation. Journal of Hazardous Materials, 2016, 306, 305-312.	12.4	38
111	Silylation of layered double hydroxides via an induced hydrolysis method. Journal of Materials Chemistry, 2011, 21, 10711.	6.7	37
112	Silylation of saponite with 3-aminopropyltriethoxysilane. Applied Clay Science, 2016, 132-133, 133-139.	5.2	37
113	Adsorption isotherm, mechanism, and geometry of Pb(II) on magnetites substituted with transition metals. Chemical Geology, 2017, 470, 132-140.	3.3	37
114	Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite. Science Bulletin, 2010, 55, 1092-1099.	1.7	36
115	Influences of thermal pretreatment temperature and solvent on the organosilane modification of Al13-intercalated/Al-pillared montmorillonite. Applied Clay Science, 2010, 50, 546-553.	5.2	35
116	Ag ₃ PO ₄ immobilized on hydroxy-metal pillared montmorillonite for the visible light driven degradation of acid red 18. Catalysis Science and Technology, 2016, 6, 4116-4123.	4.1	35
117	Templated synthesis of nitrogen-doped graphene-like carbon materials using spent montmorillonite. RSC Advances, 2015, 5, 7522-7528.	3.6	34
118	Bisphenol A degradation by a new acidic nano zero-valent iron diatomite composite. Catalysis Science and Technology, 2016, 6, 6066-6075.	4.1	34
119	Clay minerals derived nanostructured silicon with various morphology: Controlled synthesis, structural evolution, and enhanced lithium storage properties. Journal of Power Sources, 2018, 405, 61-69.	7.8	34
120	The influence of alkyl chain length on surfactant distribution within organo-montmorillonites and their thermal stability. Journal of Thermal Analysis and Calorimetry, 2012, 109, 301-309.	3.6	33
121	Characterization and catalytic performance of Fe3Ni8/palygorskite for catalytic cracking of benzene. Applied Clay Science, 2013, 74, 135-140.	5.2	33
122	Facile synthesis of nitrogen and sulfur co-doped graphene-like carbon materials using methyl blue/montmorillonite composites. Microporous and Mesoporous Materials, 2016, 225, 137-143.	4.4	33
123	Arrangement, conformation, and mobility of surfactant molecules intercalated in montmorillonite prepared at different pillaring reagent concentrations as studied by solid-state NMR spectroscopy. Journal of Colloid and Interface Science, 2006, 299, 754-760.	9.4	32
124	Organo-Clays As Sorbents of Hydrophobic Organic Contaminants: Sorptive Characteristics and Approaches to Enhancing Sorption Capacity. Clays and Clay Minerals, 2015, 63, 199-221.	1.3	32
125	Changes in the surfaces of adsorbed p-nitrophenol on methyltrioctadecylammonium bromide organoclayâ€"An XRD, TG, and infrared spectroscopic study. Journal of Colloid and Interface Science, 2007, 314, 405-414.	9.4	31
126	Experimental study of the selective adsorption of heavy metals onto clay minerals. Diqiu Huaxue, 2000, 19, 105-109.	0.5	30

#	Article	IF	Citations
127	Silylation of Layered Double Hydroxides via a Calcinationâ^'Rehydration Route. Langmuir, 2010, 26, 2769-2773.	3.5	30
128	Tailoring surface properties and structure of layered double hydroxides using silanes with different number of functional groups. Journal of Solid State Chemistry, 2014, 213, 176-181.	2.9	30
129	Structure and dynamic properties of water saturated CTMA-montmorillonite: molecular dynamics simulations. Applied Clay Science, 2014, 97-98, 62-71.	5.2	30
130	Expansion characteristics of organo montmorillonites during the intercalation, aging, drying and rehydration processes: Effect of surfactant/CEC ratio. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 401-407.	4.7	29
131	Distribution characteristics and ecological risk assessment of PAHs in surface waters of China. Science China Earth Sciences, 2012, 55, 914-925.	5.2	29
132	H ₂ S-Modified Natural Ilmenite: A Recyclable Magnetic Sorbent for Recovering Gaseous Elemental Mercury from Flue Gas. Industrial & Engineering Chemistry Research, 2017, 56, 10060-10068.	3.7	29
133	Catalytic degradation of Orange II in aqueous solution using diatomite-supported bimetallic Fe/Ni nanoparticles. RSC Advances, 2018, 8, 7687-7696.	3.6	29
134	Coupling between clay swelling/collapse and cationic partition. Geochimica Et Cosmochimica Acta, 2020, 285, 78-99.	3.9	29
135	Structural and sorptive characteristics of the cetyltrimethylammonium and polyacrylamide modified bentonite. Chemical Engineering Journal, 2010, 160, 220-225.	12.7	28
136	Silylation of Al13-intercalated montmorillonite with trimethylchlorosilane and their adsorption for Orange II. Applied Clay Science, 2014, 99, 229-236.	5.2	28
137	From spent Mg/Al layered double hydroxide to porous carbon materials. Journal of Hazardous Materials, 2015, 300, 572-580.	12.4	28
138	Converting Spent Cu/Fe Layered Double Hydroxide into Cr(VI) Reductant and Porous Carbon Material. Scientific Reports, 2017, 7, 7277.	3.3	28
139	Adsorption ofp-Nitrophenol on Mono-, Di-, and Trialkyl Surfactant-Intercalated Organoclays:  A Comparative Study. Journal of Physical Chemistry C, 2007, 111, 7487-7493.	3.1	27
140	Preparation and characterization of 3-aminopropyltriethoxysilane grafted montmorillonite and acid-activated montmorillonite. Science Bulletin, 2009, 54, 265-271.	9.0	27
141	Thermal analysis evidence for the location of zwitterionic surfactant on clay minerals. Applied Clay Science, 2015, 112-113, 62-67.	5.2	27
142	Enhanced photoelectrochemical degradation of Ibuprofen and generation of hydrogen via BiOI-deposited TiO2 nanotube arrays. Science of the Total Environment, 2018, 633, 1198-1205.	8.0	27
143	Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals. Applied Clay Science, 2018, 153, 205-216.	5 . 2	27
144	Influences of Cation Ratio, Anion Type, and Water Content on Polytypism of Layered Double Hydroxides. Inorganic Chemistry, 2018, 57, 7299-7313.	4.0	27

#	Article	IF	Citations
145	Aluminum ion occupancy in the structure of synthetic saponites: Effect on crystallinity. American Mineralogist, 2014, 99, 109-116.	1.9	26
146	Co-sorption of Cd and phosphate on the surface of a synthetic hydroxyiron-montmorillonite complex. Clays and Clay Minerals, 2014, 62, 79-88.	1.3	26
147	The structural change of vermiculite during dehydration processes: A real-time in-situ XRD method. Applied Clay Science, 2019, 183, 105332.	5.2	26
148	The mechanism of defect induced hydroxylation on pyrite surfaces and implications for hydroxyl radical generation in prebiotic chemistry. Geochimica Et Cosmochimica Acta, 2019, 244, 163-172.	3.9	26
149	Technical development of characterization methods provides insights into clay mineral-water interactions: A comprehensive review. Applied Clay Science, 2021, 206, 106088.	5.2	26
150	Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Science of the Total Environment, 2022, 832, 155116.	8.0	26
151	Superior thermal stability of Keggin-Al 30 pillared montmorillonite: A comparative study with Keggin-Al 13 pillared montmorillonite. Microporous and Mesoporous Materials, 2018, 265, 104-111.	4.4	25
152	Conversion of serpentine to smectite under hydrothermal condition: Implication for solid-state transformation. American Mineralogist, 2018, 103, 241-251.	1.9	25
153	Arrangement Models of Keggin-Al ₃₀ and Keggin-Al ₁₃ in the Interlayer of Montmorillonite and the Impacts of Pillaring on Surface Acidity: A Comparative Study on Catalytic Oxidation of Toluene. Langmuir, 2019, 35, 382-390.	3.5	25
154	Carbonate-Enhanced Transformation of Ferrihydrite to Hematite. Environmental Science & Environmental &	10.0	25
155	Coupled redox cycling of Fe and Mn in the environment: The complex interplay of solution species with Fe- and Mn-(oxyhydr)oxide crystallization and transformation. Earth-Science Reviews, 2022, 232, 104105.	9.1	25
156	Modelling the effects of surfactant loading level on the sorption of organic contaminants on organoclays. RSC Advances, 2015, 5, 47022-47030.	3.6	24
157	Fullerol modification ferrihydrite for the degradation of acid red 18 under simulated sunlight irradiation. Journal of Molecular Catalysis A, 2016, 424, 393-401.	4.8	24
158	Crystal habit-directed gold deposition on pyrite: Surface chemical interpretation of the pyrite morphology indicative of gold enrichment. Geochimica Et Cosmochimica Acta, 2019, 264, 191-204.	3.9	24
159	A novel multifunctional adsorbent synthesized by modifying acidified organo-montmorillonite with iron hydroxides. Applied Clay Science, 2020, 185, 105420.	5.2	24
160	Competitive adsorption geometries for the arsenate As(V) and phosphate P(V) oxyanions on magnetite surfaces: Experiments and theory. American Mineralogist, 2021, 106, 374-388.	1.9	24
161	Environmental risk assessment of the potential "Chemical Time Bomb―of ion-adsorption type rare earth elements in urban areas. Science of the Total Environment, 2022, 822, 153305.	8.0	24
162	Reduction removal of hexavalent chromium by zinc-substituted magnetite coupled with aqueous Fe(II) at neutral pH value. Journal of Colloid and Interface Science, 2017, 500, 20-29.	9.4	23

#	Article	IF	CITATIONS
163	Kaolinization of 2:1 type clay minerals with different swelling properties. American Mineralogist, 2020, 105, 687-696.	1.9	23
164	Enhancing the sorption capacity of CTMA-bentonite by simultaneous intercalation of cationic polyacrylamide. Journal of Hazardous Materials, 2010, 178, 1078-1084.	12.4	22
165	Magnetite-rutile symplectite derived from ilmenite-hematite solid solution in the Xinjie Fe-Ti oxide-bearing, mafic-ultramafic layered intrusion (SW China). American Mineralogist, 2015, 100, 2348-2351.	1.9	22
166	Morphology controllable syntheses of micro- and nano-iron pyrite mono- and poly-crystals: a review. RSC Advances, 2016, 6, 31988-31999.	3.6	22
167	BiVO4/Fe/Mt composite for visible-light-driven degradation of acid red 18. Applied Clay Science, 2016, 129, 27-34.	5.2	21
168	Sequestration of Gaseous Hg ⁰ by Sphalerite with Fe Substitution: Performance, Mechanism, and Structure–Activity Relationship. Journal of Physical Chemistry C, 2019, 123, 2828-2836.	3.1	21
169	Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China. Ore Geology Reviews, 2021, 135, 104173.	2.7	21
170	Facet-specific oxidation of Mn(II) and heterogeneous growth of manganese (oxyhydr)oxides on hematite nanoparticles. Geochimica Et Cosmochimica Acta, 2021, 307, 151-167.	3.9	21
171	A new insight into the compositional and structural control of porous clay heterostructures from the perspective of NMR and TEM. Microporous and Mesoporous Materials, 2016, 224, 285-293.	4.4	20
172	Transformation of halloysite and kaolinite into beidellite under hydrothermal condition. American Mineralogist, 2017, 102, 997-1005.	1.9	20
173	REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province, South China. Ore Geology Reviews, 2021, 134, 104172.	2.7	20
174	The influence of substituting metals (Ti, V, Cr, Mn, Co and Ni) on the thermal stability of magnetite. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1317-1324.	3.6	19
175	Effect of functionalized kaolinite on the curing kinetics of cycloaliphatic epoxy/anhydride system. Applied Clay Science, 2014, 95, 317-322.	5. 2	19
176	The non-micellar template model for porous clay heterostructures: A perspective from the layer charge of base clay. Applied Clay Science, 2015, 116-117, 102-110.	5.2	19
177	Thermal decomposition of silylated layered double hydroxides. Journal of Thermal Analysis and Calorimetry, 2010, 101, 153-159.	3.6	18
178	Interaction of polyhydroxy fullerenes with ferrihydrite: adsorption and aggregation. Journal of Environmental Sciences, 2018, 64, 1-9.	6.1	18
179	Groundwater controls REE mineralisation in the regolith of South China. Chemical Geology, 2021, 577, 120295.	3.3	18
180	Restricting layer collapse enhances the adsorption capacity of reduced-charge organoclays. Applied Clay Science, 2014, 88-89, 73-77.	5.2	17

#	Article	IF	Citations
181	Kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions. Science of the Total Environment, 2019, 668, 602-616.	8.0	17
182	TiO2/Schwertmannite nanocomposites as superior co-catalysts in heterogeneous photo-Fenton process. Journal of Environmental Sciences, 2019, 80, 208-217.	6.1	17
183	The oxidation state and microstructural environment of transition metals (V, Co, and Ni) in magnetite: an XAFS study. Physics and Chemistry of Minerals, 2015, 42, 373-383.	0.8	16
184	Keggin-Al30: An intercalant for Keggin-Al30 pillared montmorillonite. Applied Clay Science, 2019, 180, 105203.	5.2	16
185	Effects of Fullerol and Graphene Oxide on the Phase Transformation of Two-Line Ferrihydrite. ACS Earth and Space Chemistry, 2020, 4, 335-344.	2.7	16
186	Effects of solid acidity of clay minerals on the thermal decomposition of 12-aminolauric acid. Journal of Thermal Analysis and Calorimetry, 2013, 114, 125-130.	3.6	15
187	Magnetite exsolution in ilmenite from the Fe-Ti oxide gabbro in the Xinjie intrusion (SW China) and sources of unusually strong remnant magnetization. American Mineralogist, 2016, 101, 2759-2767.	1.9	15
188	Fullerene modification of Ag ₃ PO ₄ for the visible-light-driven degradation of acid red 18. RSC Advances, 2016, 6, 85962-85969.	3.6	15
189	Remarkable effect of Co substitution in magnetite on the reduction removal of Cr(VI) coupled with aqueous Fe(II): Improvement mechanism and Cr fate. Science of the Total Environment, 2019, 656, 400-408.	8.0	14
190	Photoreductive Dissolution of Iron (Hydr)oxides and Its Geochemical Significance. ACS Earth and Space Chemistry, 2022, 6, 811-829.	2.7	14
191	Studies on the solid acidity of heated and cation-exchanged montmorillonite using n-butylamine titration in non-aqueous system and diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy. Physics and Chemistry of Minerals, 2013, 40, 479-489.	0.8	13
192	Ecological Risk Assessment of Organochlorine Pesticides in Surface Waters of Lake Taihu, China. Human and Ecological Risk Assessment (HERA), 2013, 19, 840-856.	3.4	13
193	Investigation of structure and thermal stability of surfactant-modified Al-pillared montmorillonite. Journal of Thermal Analysis and Calorimetry, 2014, 115, 219-225.	3.6	13
194	Al13-pillared montmorillonite modified by cationic and zwitterionic surfactants: A comparative study. Applied Clay Science, 2014, 101, 327-334.	5.2	13
195	Diatomite-Metal-Organic Framework Composite with Hierarchical Pore Structures for Adsorption/Desorption of Hydrogen, Carbon Dioxide and Water Vapor. Materials, 2020, 13, 4700.	2.9	13
196	The Influence of Random Defect Density on the Thermal Stability of Kaolinites. Journal of the American Ceramic Society, 2005, 88, 1017-1019.	3.8	12
197	Aggregative growth of quasi-octahedral iron pyrite mesocrystals in a polyol solution through oriented attachment. CrystEngComm, 2016, 18, 8823-8828.	2.6	12
198	Improvement of zinc substitution in the reactivity of magnetite coupled with aqueous Fe(II) towards nitrobenzene reduction. Journal of Colloid and Interface Science, 2018, 517, 104-112.	9.4	12

#	Article	IF	Citations
199	Preservation of Cyanobacterial UVRâ€Shielding Pigment Scytonemin in Carbonate Ooids Formed in Pleistocene Salt Lakes in the Qaidam Basin, Tibetan Plateau. Geophysical Research Letters, 2019, 46, 10375-10383.	4.0	11
200	The structure of montmorillonites modified with zwitterionic surfactants and their sorption ability. Mineralogy and Petrology, 2015, 109, 349-355.	1.1	10
201	Possible mechanism of structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups. Journal of Colloid and Interface Science, 2016, 461, 64-68.	9.4	10
202	Temperature-Dependent Structure and Dynamics of Water Intercalated in Layered Double Hydroxides with Different Hydration States. Journal of Physical Chemistry C, 2017, 121, 23752-23762.	3.1	10
203	Effects of organic templates on the structural properties of porous clay heterostructures: a non-micellar template model for porous structure. Journal of Porous Materials, 2015, 22, 219-228.	2.6	9
204	Structural effects on dissolution of silica polymorphs in various solutions. Inorganica Chimica Acta, 2018, 471, 57-65.	2.4	9
205	Ferrihydrite Transformation Impacted by Adsorption and Structural Incorporation of Rare Earth Elements. ACS Earth and Space Chemistry, 2021, 5, 2768-2777.	2.7	9
206	Microorganisms Accelerate REE Mineralization in Supergene Environments. Applied and Environmental Microbiology, 2022, 88, .	3.1	9
207	A Critical Textural Evolution Study of Zerovalent Iron/Montmorillonite Nanosized Heterostructures Under Various Iron Loadings. Clays and Clay Minerals, 2011, 59, 490-500.	1.3	8
208	Incorporation of incompatible trace elements into molybdenite: Layered PbS precipitates within molybdenite. American Mineralogist, 2022, 107, 54-64.	1.9	8
209	Transformation of boehmite into 2:1 type layered aluminosilicates with different layer charges under hydrothermal conditions. Applied Clay Science, 2019, 181, 105207.	5.2	7
210	Heterogeneous Reduction of 2-Chloronitrobenzene by Co-substituted Magnetite Coupled with Aqueous Fe ²⁺ : Performance, Factors, and Mechanism. ACS Earth and Space Chemistry, 2019, 3, 728-737.	2.7	7
211	Closest-Packing Water Monolayer Stably Intercalated in Phyllosilicate Minerals under High Pressure. Langmuir, 2020, 36, 618-627.	3.5	7
212	Competitive adsorption of alkali ions on aqueous mica surface: A force field comparison molecular dynamics study. Applied Clay Science, 2022, 219, 106436.	5.2	7
213	Superimposed microstructures of pyrite in auriferous quartz veins as fingerprints of episodic fluid infiltration in the Wulong Lode gold deposit, NE China. Mineralium Deposita, 2022, 57, 685-700.	4.1	7
214	Changes in the surfaces on DDOAB organoclays adsorbed with paranitrophenol—An XRD, TEM and TG study. Materials Research Bulletin, 2008, 43, 3318-3326.	5.2	6
215	Formation of saponite by hydrothermal alteration of metal oxides: Implication for the rarity of hydrotalcite. American Mineralogist, 2019, 104, 1156-1164.	1.9	6
216	One-pot synthesis of the reduced-charge montmorillonite via molten salts treatment. Applied Clay Science, 2020, 186, 105429.	5.2	6

#	Article	IF	CITATIONS
217	Environmental-sulfur-controlled surface properties of pyrite: a first principles PBE + U study. Physics and Chemistry of Minerals, 2021, 48, 1.	0.8	6
218	Development of novel multifunctional adsorbent by effectively hosting both zwitterionic surfactant and hydrated ferric oxides in montmorillonite. Science of the Total Environment, 2021, 774, 144974.	8.0	6
219	Evidence for a two-stage particle attachment mechanism for phyllosilicate crystallization in geological processes. American Mineralogist, 2021, 106, 983-993.	1.9	6
220	Periodic and non-periodic stacking in molybdenite (MoS2) revealed by STEM. American Mineralogist, 2022, 107, 997-1006.	1.9	6
221	Distinct effects of transition metal (cobalt, manganese and nickel) ion substitutions on the abiotic oxidation of pyrite: In view of hydroxyl radical production. Geochimica Et Cosmochimica Acta, 2022, 321, 170-183.	3.9	6
222	The different effects of sulfate on the adsorption of REEs on kaolinite and ferrihydrite. Applied Clay Science, 2022, 221, 106468.	5.2	6
223	Heterogeneous Nucleation and Growth of CaCO3 on Calcite (104) and Aragonite (110) Surfaces: Implications for the Formation of Abiogenic Carbonate Cements in the Ocean. Minerals (Basel,) Tj ETQq1 1 0.784	13 1 :40rgBT	Overlock 10
224	Photochemically Induced Electron Transfer: Simultaneously Decolorizing Dye and Reducing Cr(VI). Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	4
225	Molecular Simulation Study on the Interaction of Nanoparticles with Clay Minerals: C ₆₀ on Surfaces of Pyrophyllite and Kaolinite. Clays and Clay Minerals, 2017, 65, 398-409.	1.3	4
226	A Review of the Role of Natural Clay Minerals as Effective Adsorbents and an Alternative Source of Minerals. , 0 , , .		4
227	Magnetite-rutile symplectite in ilmenite records magma hydration in layered intrusions. American Mineralogist, 2022, 107, 395-404.	1.9	4
228	Carbonate accelerated transformation of ferrihydrite in the presence of phosphate. Geoderma, 2022, 417, 115811.	5.1	4
229	Mineralogical Evolution of the Paleogene Formations in the Kyzyltokoy Basin, Kyrgyzstan: Implications for the Formation of Glauconite. Clays and Clay Minerals, 2018, 66, 43-60.	1.3	3
230	Hydration induced bandgap shift at pyrite-water interface. Applied Physics Letters, 2018, 113, .	3.3	3
231	Chemical and structural studies of coexisting 1M- and 2M1-polytypes in synthetic fluorophlogopites and influence of Al on the polytype formation. Physics and Chemistry of Minerals, 2019, 46, 259-270.	0.8	3
232	Organoclay-derived lamellar silicon carbide/carbon composite as an ideal support for Pt nanoparticles: facile synthesis and toluene oxidation performance. Chemical Communications, 2020, 56, 9489-9492.	4.1	3
233	Pressure-temperature diagram of wetting and dewetting in a hydrophobic grain boundary and the liquidlike to icelike transition of monolayer water. Physical Review B, 2020, 101, .	3.2	3
234	Massive Deposition of Carbonate Nodules in the Hyperarid Northwest Qaidam Basin of the Northern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009654.	2.5	3

#	Article	IF	CITATIONS
235	FEASIBILITY OF VISIBLE SHORT-WAVE INFRARED REFLECTANCE SPECTROSCOPY TO CHARACTERIZE REGOLITH-HOSTED RARE EARTH ELEMENT MINERALIZATION. Economic Geology, 2022, 117, 495-508.	3.8	3
236	Visible/near infrared reflectance (VNIR) spectral features of ion-exchangeable Rare earth elements hosted by clay minerals: Potential use for exploration of regolith-hosted REE deposits. Applied Clay Science, 2021, 215, 106320.	5.2	3
237	Transformation of Ordered Albite into Kaolinite: Implication for the "Booklet―Morphology. ACS Earth and Space Chemistry, 2022, 6, 1133-1142.	2.7	3
238	Brain-terrain-like features in the Qaidam Basin: Implications for various morphological features on Mars. Icarus, 2021, 363, 114434.	2.5	2
239	Intrinsic water layering next to soft, solid, hydrophobic, and hydrophilic substrates. Journal of Chemical Physics, 2020, 153, 224702.	3.0	1
240	The Composition and Growth Mechanism of Coexisting 4M2 and 4A8 Biotite Polytypes from Rhyolite of Long Valley Caldera, California. Clays and Clay Minerals, 2022, 70, 48-61.	1.3	1
241	Enhanced immobilization of phosphate by ferrihydrite during the photoreductive dissolution process. Science of the Total Environment, 2022, 838, 155835.	8.0	1
242	Weathering of Chlorite Illite Deposits in the Hyperarid Qaidam Basin: Implications to Post-Depositional Alteration on Martian Clay Minerals. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	1
243	Formation of Misfit Layered PbS Within Molybdenite. Microscopy and Microanalysis, 2020, 26, 486-487.	0.4	O
244	Fluid pathway evolution and mass transfer during Mg-dominated mineral transformations. Applied Clay Science, 2021, 207, 106097.	5.2	0
245	Multiple Growth Mechanisms of 2:1 Type Layered Aluminosilicates during Mineral Transformation. ACS Earth and Space Chemistry, 2022, 6, 1930-1936.	2.7	О