Bin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5773010/publications.pdf

Version: 2024-02-01

28 papers

1,933 citations

19 h-index 28 g-index

28 all docs

28 docs citations

28 times ranked

2595 citing authors

#	Article	IF	CITATIONS
1	Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 2018, 399, 274-286.	7.8	587
2	Novel Carbonâ€Encapsulated Porous SnO ₂ Anode for Lithiumâ€Ion Batteries with Much Improved Cyclic Stability. Small, 2016, 12, 1945-1955.	10.0	247
3	Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceramics International, 2014, 40, 13223-13230.	4.8	126
4	A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. Journal of Power Sources, 2014, 252, 200-207.	7.8	125
5	Tin-based materials as versatile anodes for alkali (earth)-ion batteries. Journal of Power Sources, 2018, 395, 41-59.	7.8	98
6	A facile process for coating amorphous FePO4 onto LiNi0.8Co0.15Al0.05O2 and the effects on its electrochemical properties. Materials Letters, 2014, 131, 210-213.	2.6	86
7	Phase Transition Induced Synthesis of Layered/Spinel Heterostructure with Enhanced Electrochemical Properties. Advanced Functional Materials, 2017, 27, 1604349.	14.9	80
8	High-Rate LiTi ₂ (PO ₄) ₃ @N–C Composite via Bi-nitrogen Sources Doping. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28337-28345.	8.0	77
9	A novel carbamide-assistant hydrothermal process for coating Al2O3 onto LiMn1.5Ni0.5O4 particles used for cathode material of lithium-ion batteries. Journal of Alloys and Compounds, 2014, 583, 313-319.	5.5	61
10	Fabrication of 2D NiO Porous Nanosheets with Superior Lithium Storage Performance via a Facile Thermal-Decomposition Method. ACS Applied Energy Materials, 2019, 2, 8262-8273.	5.1	59
11	Enhancing sodium-ion storage performance of MoO2/N-doped carbon through interfacial Mo-N-C bond. Science China Materials, 2021, 64, 85-95.	6.3	48
12	A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance. Electrochemistry Communications, 2013, 36, 6-9.	4.7	40
13	Sodium ion storage performance and mechanism in orthorhombic V2O5 single-crystalline nanowires. Science China Materials, 2021, 64, 557-570.	6.3	36
14	Carbon encapsulated Sn-Co alloy: A stabilized tin-based material for sodium storage. Materials Letters, 2018, 210, 321-324.	2.6	34
15	Mesoporous Tungsten Trioxide Polyaniline Nanocomposite as an Anode Material for Highâ€Performance Lithiumâ€ion Batteries. ChemNanoMat, 2016, 2, 281-289.	2.8	32
16	Enhancing high-voltage performance of LiNi0.5Co0.2Mn0.3O2 cathode material via surface modification with lithium-conductive Li3Fe2(PO4)3. Journal of Alloys and Compounds, 2019, 773, 519-526.	5.5	32
17	Layered Cathode Materials: Precursors, Synthesis, Microstructure, Electrochemical Properties, and Battery Performance. Small, 2022, 18, e2107697.	10.0	28
18	Enhanced electrochemical performance in LiNi0.8Co0.15Al0.05O2 cathode material: Resulting from Mn-surface-modification using a facile oxidizing–coating method. Materials Letters, 2014, 115, 49-52.	2.6	26

#	Article	IF	CITATION
19	NiS2 wrapped into graphene with strong Ni-O interaction for advanced sodium and potassium ion batteries. Electrochimica Acta, 2021, 369, 137704.	5.2	21
20	Controllable construction of yolk–shell Sn–Co@void@C and its advantages in Na-ion storage. Rare Metals, 2021, 40, 2392-2401.	7.1	21
21	Dually Decorated Na ₃ V ₂ (PO ₄) ₂ F ₃ by Carbon and 3D Graphene as Cathode Material for Sodiumâ€ion Batteries with High Energy and Power Densities. ChemElectroChem, 2020, 7, 3975-3983.	3.4	17
22	Microspherical LiFePO3.98F0.02/3DG/C as an advanced cathode material for high-energy lithium-ion battery with a superior rate capability and long-term cyclability. Ionics, 2021, 27, 1-11.	2.4	12
23	LiMn ₂ O ₄ Cathode Materials with Excellent Performances by Synergistic Enhancement of Double-Cation (Na ⁺ , Mg ²⁺) Doping and 3DG Coating for Power Lithium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 26106-26116.	3.1	11
24	Comparative Study and Electrochemical Properties of LiFePO < sub>4 < /sub>F Synthesized by Different Routes. Bulletin of the Korean Chemical Society, 2012, 33, 2315-2319.	1.9	11
25	Electrochemical Performance and Behavior Mechanism for Zn/LiFePO ₄ Battery in a Slightly Acidic Aqueous Electrolyte. ChemSusChem, 2022, 15, .	6.8	5
26	Decarbonylative/decarboxylative $[4+2]$ annulation of phthalic anhydrides and cyclic iodoniums towards triphenylenes. Organic and Biomolecular Chemistry, 2022, 20, 3913-3916.	2.8	5
27	Monodisperse SnO2/Co3O4 nanocubes synthesized via phase separation and their advantages in electrochemical Li-ion storage. Ionics, 2020, 26, 6125-6132.	2.4	4
28	Porous MoS ₂ nanosheets for the fast decomposition of energetic compounds. Dalton Transactions, 2022, 51, 5278-5284.	3.3	4