
Paolo M Comoglio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5772855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	hOA-DN30: a highly effective humanized single-arm MET antibody inducing remission of â€~MET-addicted' cancers. Journal of Experimental and Clinical Cancer Research, 2022, 41, 112.	8.6	5
2	METâ^†14 promotes a ligand-dependent, AKT-driven invasive growth. Life Science Alliance, 2022, 5, e202201409.	2.8	7
3	MET Exon 14 Skipping: A Case Study for the Detection of Genetic Variants in Cancer Driver Genes by Deep Learning. International Journal of Molecular Sciences, 2021, 22, 4217.	4.1	6
4	Cancer of unknown primary stem-like cells model multi-organ metastasis and unveil liability to MEK inhibition. Nature Communications, 2021, 12, 2498.	12.8	20
5	Factor XII protects neurons from apoptosis by epidermal and hepatocyte growth factor receptorâ€dependent mechanisms. Journal of Thrombosis and Haemostasis, 2021, 19, 2235-2247.	3.8	2
6	HGF and MET: From Brain Development to Neurological Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 683609.	3.7	47
7	ERBB3 overexpression due to miR-205 inactivation confers sensitivity to FGF, metabolic activation, and liability to ERBB3 targeting in glioblastoma. Cell Reports, 2021, 36, 109455.	6.4	18
8	A receptor-antibody hybrid hampering MET-driven metastatic spread. Journal of Experimental and Clinical Cancer Research, 2021, 40, 32.	8.6	6
9	Cancer of Unknown Primary (<scp>CUP</scp>): genetic evidence for a novel nosological entity? A case report. EMBO Molecular Medicine, 2020, 12, e11756.	6.9	10
10	ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. International Journal of Molecular Sciences, 2019, 20, 2164.	4.1	168
11	Met inhibition revokes IFNÎ ³ -induction of PD-1 ligands in MET-amplified tumours. British Journal of Cancer, 2019, 120, 527-536.	6.4	34
12	Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nature Reviews Cancer, 2018, 18, 341-358.	28.4	248
13	Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibodyâ€â€œdecoy― strategy. International Journal of Cancer, 2018, 143, 1774-1785.	5.1	11
14	A Molecularly Annotated Model of Patient-Derived Colon Cancer Stem–Like Cells to Assess Genetic and Nongenetic Mechanisms of Resistance to Anti-EGFR Therapy. Clinical Cancer Research, 2018, 24, 807-820.	7.0	23
15	Whole exome sequencing identifies a germline <i>MET</i> mutation in two siblings with hereditary wild-type <i>RET</i> medullary thyroid cancer. Human Mutation, 2018, 39, 371-377.	2.5	24
16	MET/HGF Co-Targeting in Pancreatic Cancer: A Tool to Provide Insight into the Tumor/Stroma Crosstalk. International Journal of Molecular Sciences, 2018, 19, 3920.	4.1	24
17	Reviving oncogenic addiction to MET bypassed by BRAF (G469A) mutation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10058-10063.	7.1	17
18	The expression of LINE1â€ <i>MET</i> chimeric transcript identifies a subgroup of aggressive breast cancers. International Journal of Cancer, 2018, 143, 2838-2848.	5.1	21

#	Article	IF	CITATIONS
19	MET Activation and Physical Dynamics of the Metastatic Process: The Paradigm of Cancers of Unknown Primary Origin. EBioMedicine, 2017, 24, 34-42.	6.1	8
20	Genetic Evolution of Glioblastoma Stem-Like Cells From Primary to Recurrent Tumor. Stem Cells, 2017, 35, 2218-2228.	3.2	47
21	Dual MET/EGFR therapy leads to complete response and resistance prevention in a MET-amplified gastroesophageal xenopatient cohort. Oncogene, 2017, 36, 1200-1210.	5.9	28
22	Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors. Oncotarget, 2017, 8, 38193-38213.	1.8	22
23	Rebound Effects Caused by Withdrawal of MET Kinase Inhibitor Are Quenched by a MET Therapeutic Antibody. Cancer Research, 2016, 76, 5019-5029.	0.9	21
24	<scp>MET</scp> inhibition overcomes radiation resistance of glioblastoma stemâ€like cells. EMBO Molecular Medicine, 2016, 8, 550-568.	6.9	74
25	Dual Constant Domainâ€Fab: A novel strategy to improve halfâ€life and potency of a Met therapeutic antibody. Molecular Oncology, 2016, 10, 938-948.	4.6	11
26	Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncology, The, 2016, 17, 738-746.	10.7	778
27	Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncology, The, 2016, 17, 1386-1395.	10.7	357
28	Tankyrase inhibition impairs directional migration and invasion of lung cancer cells by affecting microtubule dynamics and polarity signals. BMC Biology, 2016, 14, 5.	3.8	20
29	Cardiac concentric hypertrophy promoted by activated Met receptor is mitigated in vivo by inhibition of Erk1,2 signalling with Pimasertib. Journal of Molecular and Cellular Cardiology, 2016, 93, 84-97.	1.9	12
30	C-met inhibition blocks bone metastasis development induced by renal cancer stem cells. Oncotarget, 2016, 7, 45525-45537.	1.8	24
31	Inhibition of ligandâ€independent constitutive activation of the Met oncogenic receptor by the engineered chemicallyâ€modified antibody DN30. Molecular Oncology, 2015, 9, 1760-1772.	4.6	18
32	IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies. Science Translational Medicine, 2015, 7, 272ra12.	12.4	100
33	Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene, 2015, 34, 1883-1889.	5.9	35
34	TNFâ€Î± promotes invasive growth through the MET signaling pathway. Molecular Oncology, 2015, 9, 377-388.	4.6	40
35	Activation of RAS family members confers resistance to ROS1 targeting drugs. Oncotarget, 2015, 6, 5182-5194.	1.8	72
36	Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy. Cell Death and Disease, 2014, 5, e1185-e1185.	6.3	61

#	Article	IF	CITATIONS
37	MET, a driver of invasive growth and cancer clonal evolution under therapeutic pressure. Current Opinion in Cell Biology, 2014, 31, 98-105.	5.4	35
38	Microenvironment-Derived HGF Overcomes Genetically Determined Sensitivity to Anti-MET Drugs. Cancer Research, 2014, 74, 6598-6609.	0.9	59
39	MET dysregulation is a hallmark of aggressive disease in multiple myeloma patients. British Journal of Haematology, 2014, 164, 841-850.	2.5	20
40	An †inâ€cell trial' to assess the efficacy of a monovalent antiâ€MET antibody as monotherapy and in association with standard cytotoxics. Molecular Oncology, 2014, 8, 378-388.	4.6	10
41	Increase of <i>MET</i> gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Molecular Oncology, 2014, 8, 1561-1574.	4.6	15
42	The ROR1 pseudokinase diversifies signaling outputs in METâ€addicted cancer cells. International Journal of Cancer, 2014, 135, 2305-2316.	5.1	39
43	MET Signaling in Colon Cancer Stem-like Cells Blunts the Therapeutic Response to EGFR Inhibitors. Cancer Research, 2014, 74, 1857-1869.	0.9	120
44	Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. Journal of Molecular Medicine, 2014, 92, 65-76.	3.9	9
45	MET-Mediated Resistance to EGFR Inhibitors: An Old Liaison Rooted in Colorectal Cancer Stem Cells. Cancer Research, 2014, 74, 3647-3651.	0.9	30
46	The <i>MET</i> Oncogene in Glioblastoma Stem Cells: Implications as a Diagnostic Marker and a Therapeutic Target. Cancer Research, 2013, 73, 3193-3199.	0.9	56
47	Oncogenes in non-small-cell lung cancer: emerging connections and novel therapeutic dynamics. Lancet Respiratory Medicine,the, 2013, 1, 251-261.	10.7	74
48	Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer. Oncogene, 2013, 32, 1428-1440.	5.9	53
49	Amplification of the <i>MET</i> Receptor Drives Resistance to Anti-EGFR Therapies in Colorectal Cancer. Cancer Discovery, 2013, 3, 658-673.	9.4	585
50	S49076 Is a Novel Kinase Inhibitor of MET, AXL, and FGFR with Strong Preclinical Activity Alone and in Association with Bevacizumab. Molecular Cancer Therapeutics, 2013, 12, 1749-1762.	4.1	78
51	Sema3E–Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. Journal of Clinical Investigation, 2013, 123, 5411-5411.	8.2	0
52	Inhibition of MEK and PI3K/mTOR Suppresses Tumor Growth but Does Not Cause Tumor Regression in Patient-Derived Xenografts of RAS-Mutant Colorectal Carcinomas. Clinical Cancer Research, 2012, 18, 2515-2525.	7.0	172
53	MiR-1 Downregulation Cooperates with MACC1 in Promoting <i>MET</i> Overexpression in Human Colon Cancer. Clinical Cancer Research, 2012, 18, 737-747.	7.0	116
54	The <i>MET</i> Oncogene Is a Functional Marker of a Glioblastoma Stem Cell Subtype. Cancer Research, 2012, 72, 4537-4550.	0.9	120

#	Article	IF	CITATIONS
55	A preclinical algorithm of soluble surrogate biomarkers that correlate with therapeutic inhibition of the MET oncogene in gastric tumors. International Journal of Cancer, 2012, 130, 1357-1366.	5.1	21
56	Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14240-14245.	7.1	113
57	Induction of MET by Ionizing Radiation and Its Role in Radioresistance and Invasive Growth of Cancer. Journal of the National Cancer Institute, 2011, 103, 645-661.	6.3	300
58	Ror1 Is a Pseudokinase That Is Crucial for Met-Driven Tumorigenesis. Cancer Research, 2011, 71, 3132-3141.	0.9	119
59	A Molecularly Annotated Platform of Patient-Derived Xenografts ("Xenopatientsâ€) Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer. Cancer Discovery, 2011, 1, 508-523.	9.4	818
60	Ron Kinase Transphosphorylation Sustains <i>MET</i> Oncogene Addiction. Cancer Research, 2011, 71, 1945-1955.	0.9	65
61	Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clinical and Experimental Metastasis, 2011, 28, 793-802.	3.3	49
62	MET mutations in cancers of unknown primary origin (CUPs). Human Mutation, 2011, 32, 44-50.	2.5	61
63	Genetic and Expression Analysis of MET, MACC1, and HGF in Metastatic Colorectal Cancer: Response to Met Inhibition in Patient Xenografts and Pathologic Correlations. Clinical Cancer Research, 2011, 17, 3146-3156.	7.0	113
64	Abstract 3272: A Met receptor docking site peptide fused to cell-penetrating sequences acts as a powerful inhibitor of angiogenesis and vascular tumour growth. , 2011, , .		0
65	Sema3E–Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. Journal of Clinical Investigation, 2011, 121, 2945-2945.	8.2	0
66	Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene, 2010, 29, 5286-5298.	5.9	22
67	MET signalling: principles and functions in development, organ regeneration and cancer. Nature Reviews Molecular Cell Biology, 2010, 11, 834-848.	37.0	1,029
68	The Tetraspanin CD151 Is Required for Met-dependent Signaling and Tumor Cell Growth. Journal of Biological Chemistry, 2010, 285, 38756-38764.	3.4	46
69	Monovalency Unleashes the Full Therapeutic Potential of the DN-30 Anti-Met Antibody. Journal of Biological Chemistry, 2010, 285, 36149-36157.	3.4	73
70	<i>MET</i> and <i>KRAS</i> Gene Amplification Mediates Acquired Resistance to MET Tyrosine Kinase Inhibitors. Cancer Research, 2010, 70, 7580-7590.	0.9	164
71	Inhibition of Src Impairs the Growth of Met-Addicted Gastric Tumors. Clinical Cancer Research, 2010, 16, 3933-3943.	7.0	39
72	A Disintegrin and Metalloproteinase-10 (ADAM-10) Mediates DN30 Antibody-induced Shedding of the Met Surface Receptor. Journal of Biological Chemistry, 2010, 285, 26335-26340.	3.4	61

#	Article	IF	CITATIONS
73	Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition. Molecular Cancer, 2010, 9, 121.	19.2	95
74	Targeting the MET oncogene in cancer and metastases. Expert Opinion on Investigational Drugs, 2010, 19, 1381-1394.	4.1	45
75	The Met oncogene and basal-like breast cancer: another culprit to watch out for?. Breast Cancer Research, 2010, 12, 208.	5.0	68
76	Sema3E–Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. Journal of Clinical Investigation, 2010, 120, 2684-2698.	8.2	157
77	The Fathers of Italian Histology. European Journal of Histochemistry, 2009, 51, 1.	1.5	5
78	The Slit/Robo System Suppresses Hepatocyte Growth Factor-dependent Invasion and Morphogenesis. Molecular Biology of the Cell, 2009, 20, 642-657.	2.1	53
79	Only a Subset of Met-Activated Pathways Are Required to Sustain Oncogene Addiction. Science Signaling, 2009, 2, ra80.	3.6	84
80	Growth factor receptors and class 1 oncogenes in cancer. Animal Genetics, 2009, 20, 348-350.	1.7	0
81	Molecular profiling of the "plexinome―in melanoma and pancreatic cancer. Human Mutation, 2009, 1167-1174.	30. 2.5	40
82	Profiling YB-1 target genes uncovers a new mechanism for MET receptor regulation in normal and malignant human mammary cells. Oncogene, 2009, 28, 1421-1431.	5.9	81
83	Genetic Link Between Cancer and Thrombosis. Journal of Clinical Oncology, 2009, 27, 4827-4833.	1.6	63
84	A Correction to the Research Article Titled: "Only a Subset of Met-Activated Pathways Are Required to Sustain Oncogene Addiction" by A. Bertotti, M. F. Burbridge, S. Gastaldi, F. Galimi, D. Torti, E. Medico, S. Giordano, S. Corso, G. Rolland-Valognes, B. P. Lockhart, J. A. Hickman, P. M. Comoglio, L. Trusolino. Science Signaling, 2009, 2, er11.	3.6	23
85	Prevention of hypoxia by myoglobin expression in human tumor cells promotes differentiation and inhibits metastasis. Journal of Clinical Investigation, 2009, 119, 865-875.	8.2	59
86	The Met tyrosine kinase receptor in development and cancer. Cancer and Metastasis Reviews, 2008, 27, 85-94.	5.9	303
87	Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1857-1867.	6.4	90
88	Metron factor-1 prevents liver injury without promoting tumor growth and metastasis. Hepatology, 2008, 47, 2010-2025.	7.3	15
89	Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene, 2008, 27, 684-693.	5.9	126
90	Met-driven invasive growth involves transcriptional regulation of Arhgap12. Oncogene, 2008, 27, 5590-5598.	5.9	28

#	Article	IF	CITATIONS
91	Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nature Reviews Drug Discovery, 2008, 7, 504-516.	46.4	737
92	Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. Journal of Experimental Medicine, 2008, 205, 1673-1685.	8.5	233
93	"Active―Cancer Immunotherapy by Anti-Met Antibody Gene Transfer. Cancer Research, 2008, 68, 9176-9183.	0.9	36
94	A High Affinity Hepatocyte Growth Factor-binding Site in the Immunoglobulin-like Region of Met. Journal of Biological Chemistry, 2008, 283, 21267-21277.	3.4	107
95	The tumor suppressor semaphorin 3B triggers a prometastatic program mediated by interleukin 8 and the tumor microenvironment. Journal of Experimental Medicine, 2008, 205, 1155-1171.	8.5	87
96	MicroRNAs Impair MET-Mediated Invasive Growth. Cancer Research, 2008, 68, 10128-10136.	0.9	168
97	Role of cMET expression in non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitors. Annals of Oncology, 2008, 19, 1605-1612.	1.2	81
98	Magic-Factor 1, a Partial Agonist of Met, Induces Muscle Hypertrophy by Protecting Myogenic Progenitors from Apoptosis. PLoS ONE, 2008, 3, e3223.	2.5	36
99	Genetic targeting of the kinase activity of the Met receptor in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11412-11417.	7.1	38
100	The MET receptor tyrosine kinase in invasion and metastasis. Journal of Cellular Physiology, 2007, 213, 316-325.	4.1	230
101	Plexin-B1 plays a redundant role during mouse development and in tumour angiogenesis. BMC Developmental Biology, 2007, 7, 55.	2.1	69
102	A positive feedback loop between hepatocyte growth factor receptor and β-catenin sustains colorectal cancer cell invasive growth. Oncogene, 2007, 26, 1078-1087.	5.9	103
103	Oncogenes, Cancer and Hemostasis. , 2007, , 1-15.		1
104	Scatter Factors in Tumor Progression. , 2006, , 111-142.		0
105	Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nature Reviews Cancer, 2006, 6, 637-645.	28.4	492
106	p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis. International Journal of Cancer, 2006, 118, 2981-2990.	5.1	38
107	Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5090-5095.	7.1	147
108	MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas. Cancer Research, 2006, 66, 4750-4757.	0.9	123

7

#	Article	IF	CITATIONS
109	The Met pathway: master switch and drug target in cancer progression. FASEB Journal, 2006, 20, 1611-1621.	0.5	117
110	β4 integrin activates a Shp2–Src signaling pathway that sustains HGF-induced anchorage-independent growth. Journal of Cell Biology, 2006, 175, 993-1003.	5.2	114
111	Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood, 2005, 105, 4321-4329.	1.4	226
112	Cancer: the matrix is now in control. Nature Medicine, 2005, 11, 1156-1158.	30.7	85
113	TGFα expression impairs Trastuzumab-induced HER2 downregulation. Oncogene, 2005, 24, 3002-3010.	5.9	113
114	The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature, 2005, 434, 396-400.	27.8	245
115	β4 Integrin Is a Transforming Molecule that Unleashes Met Tyrosine Kinase Tumorigenesis. Cancer Research, 2005, 65, 10674-10679.	0.9	70
116	A Functional Role for Hemostasis in Early Cancer Development: Figure 1 Cancer Research, 2005, 65, 8579-8582.	0.9	39
117	Proteolytic Processing Converts the Repelling Signal Sema3E into an Inducer of Invasive Growth and Lung Metastasis. Cancer Research, 2005, 65, 6167-6177.	0.9	101
118	Negative Feedback Regulation of Met-Dependent Invasive Growth by Notch. Molecular and Cellular Biology, 2005, 25, 3982-3996.	2.3	51
119	p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling. Journal of Cell Science, 2005, 118, 4689-4700.	2.0	90
120	Cell Motility Is Controlled by SF2/ASF through Alternative Splicing of the Ron Protooncogene. Molecular Cell, 2005, 20, 881-890.	9.7	339
121	Cancer therapy: can the challenge be MET?. Trends in Molecular Medicine, 2005, 11, 284-292.	6.7	218
122	Invasive growth: a genetic program. International Journal of Developmental Biology, 2004, 48, 451-456.	0.6	35
123	Hepatocyte Growth Factor/Scatter Factor Receptor. , 2004, , 367-371.		0
124	Hepatocyte Growth Factor Sensitizes Human Ovarian Carcinoma Cell Lines to Paclitaxel and Cisplatin. Cancer Research, 2004, 64, 1744-1750.	0.9	47
125	Truncated RON Tyrosine Kinase Drives Tumor Cell Progression and Abrogates Cell-Cell Adhesion Through E-Cadherin Transcriptional Repression. Cancer Research, 2004, 64, 5154-5161.	0.9	96
126	Reactive Oxygen Species Mediate Met Receptor Transactivation by G Protein-coupled Receptors and the Epidermal Growth Factor Receptor in Human Carcinoma Cells. Journal of Biological Chemistry, 2004, 279, 28970-28978.	3.4	108

#	Article	IF	CITATIONS
127	Invasive growth: A two-way street for semaphorin signalling. Nature Cell Biology, 2004, 6, 1155-1157.	10.3	18
128	To move or not to move?. EMBO Reports, 2004, 5, 356-361.	4.5	150
129	Plexinâ€B3 is a functional receptor for semaphorin 5A. EMBO Reports, 2004, 5, 710-714.	4.5	132
130	Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene, 2004, 23, 5131-5137.	5.9	164
131	Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell, 2004, 6, 61-73.	16.8	282
132	An uncleavable form of pro–scatter factor suppresses tumor growth and dissemination in mice. Journal of Clinical Investigation, 2004, 114, 1418-1432.	8.2	85
133	Interactions between growth factor receptors and adhesion molecules: breaking the rules. Current Opinion in Cell Biology, 2003, 15, 565-571.	5.4	240
134	Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 2003, 3, 347-361.	16.8	1,244
135	Tyrosine kinase signal specificity: lessons from the HGF receptor. Trends in Biochemical Sciences, 2003, 28, 527-533.	7.5	153
136	Hepatocyte growth factor and its receptor are required for malaria infection. Nature Medicine, 2003, 9, 1363-1369.	30.7	133
137	The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness. Experimental Cell Research, 2003, 288, 382-389.	2.6	104
138	Mutations in the met Oncogene Unveil a "Dual Switch―Mechanism Controlling Tyrosine Kinase Activity. Journal of Biological Chemistry, 2003, 278, 29352-29358.	3.4	41
139	Functional Regulation of Semaphorin Receptors by Proprotein Convertases. Journal of Biological Chemistry, 2003, 278, 10094-10101.	3.4	67
140	A differentiation switch for genetically modified hepatocytes. FASEB Journal, 2002, 16, 1-18.	0.5	15
141	Feline STK gene expression in mammary carcinomas. Oncogene, 2002, 21, 1785-1790.	5.9	28
142	The endophilin–CIN85–Cbl complex mediates ligand-dependent downregulation of c-Met. Nature, 2002, 416, 187-190.	27.8	424
143	An HGF–MSP chimera disassociates the trophic properties of scatter factors from their pro-invasive activity. Nature Biotechnology, 2002, 20, 488-495.	17.5	22
144	The Semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biology, 2002, 4, 720-724.	10.3	391

#	Article	IF	CITATIONS
145	Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nature Reviews Cancer, 2002, 2, 289-300.	28.4	707
146	Series Introduction: Invasive growth: from development to metastasis. Journal of Clinical Investigation, 2002, 109, 857-862.	8.2	154
147	Series Introduction: Invasive growth: from development to metastasis. Journal of Clinical Investigation, 2002, 109, 857-862.	8.2	95
148	Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Research, 2002, 62, 7025-30.	0.9	92
149	The Transmembrane Protein Off-Track Associates with Plexins and Functions Downstream of Semaphorin Signaling during Axon Guidance. Neuron, 2001, 32, 53-62.	8.1	153
150	A Signaling Adapter Function for α6β4 Integrin in the Control of HGF-Dependent Invasive Growth. Cell, 2001, 107, 643-654.	28.9	412
151	Receptor Tyrosine Kinases as Therapeutic Targets the Model of the MET Oncogene. Current Drug Targets, 2001, 2, 41-55.	2.1	56
152	Scatter factors and invasive growth. Seminars in Cancer Biology, 2001, 11, 153-165.	9.6	112
153	A gene trap vector system for identifying transcriptionally responsive genes. Nature Biotechnology, 2001, 19, 579-582.	17.5	69
154	Gab1 phosphorylation: a novel mechanism for negative regulation of HGF receptor signaling. Oncogene, 2001, 20, 156-166.	5.9	41
155	Differential requirement of the last C-terminal tail of Met receptor for cell transformation and invasiveness. Oncogene, 2001, 20, 5493-5502.	5.9	6
156	Pathway specificity for Met signalling. Nature Cell Biology, 2001, 3, E161-E162.	10.3	85
157	Macrophage Stimulating Protein Is a Novel Neurotrophic Factor. Molecular Biology of the Cell, 2001, 12, 1341-1352.	2.1	26
158	Apoptosis Enhancement by the HIV-1 Nef Protein. Journal of Immunology, 2001, 166, 81-88.	0.8	91
159	Hepatocyte Growth Factor Is a Regulator of Monocyte-Macrophage Function. Journal of Immunology, 2001, 166, 1241-1247.	0.8	129
160	Ligand-regulated Binding of FAP68 to the Hepatocyte Growth Factor Receptor. Journal of Biological Chemistry, 2001, 276, 46632-46638.	3.4	32
161	HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB Journal, 2000, 14, 1629-1640.	0.5	88
162	Staging of head and neck squamous cell carcinoma using theMET oncogene product as marker of tumor cells in lymph node metastases. International Journal of Cancer, 2000, 89, 286-292.	5.1	59

#	Article	IF	CITATIONS
163	Sustained recruitment of phospholipase C-Î ³ to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene, 2000, 19, 1509-1518.	5.9	154
164	Signalling by semaphorin receptors: cell guidance and beyond. Trends in Cell Biology, 2000, 10, 377-383.	7.9	329
165	Expression of Hepatocyte Growth Factor (HGF) and its Receptor (MET) in Medullary Carcinoma of the Thyroid. Endocrine Pathology, 2000, 11, 19-30.	9.0	72
166	HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB Journal, 2000, 14, 1629-1640.	0.5	90
167	Plexins, Semaphorins, and Scatter Factor Receptors: A Common Root for Cell Guidance Signals?. IUBMB Life, 1999, 48, 477-482.	3.4	30
168	A Peptide Representing the Carboxyl-terminal Tail of the Met Receptor Inhibits Kinase Activity and Invasive Growth. Journal of Biological Chemistry, 1999, 274, 29274-29281.	3.4	59
169	Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. Oncogene, 1999, 18, 1139-1146.	5.9	77
170	Loss of the exon encoding the juxtamembrane domain is essential for the oncogenic activation of TPR-MET. Oncogene, 1999, 18, 4275-4281.	5.9	58
171	Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene, 1999, 18, 5221-5231.	5.9	139
172	Plexins, Semaphorins, and Scatter Factor Receptors: A Common Root for Cell Guidance Signals?. IUBMB Life, 1999, 48, 477-482.	3.4	40
173	Novel mutation in the ATP-binding site of theMET oncogene tyrosine kinase in a HPRCC family. , 1999, 82, 640-643.		82
174	Hepatocyte growth factor (HGF) stimulates tumour invasiveness in papillary carcinoma of the thyroid. , 1999, 189, 570-575.		33
175	HGF: a multifunctional growth factor controlling cell scattering. International Journal of Biochemistry and Cell Biology, 1999, 31, 1357-1362.	2.8	141
176	Plexins Are a Large Family of Receptors for Transmembrane, Secreted, and GPI-Anchored Semaphorins in Vertebrates. Cell, 1999, 99, 71-80.	28.9	1,029
177	Unified Nomenclature for the Semaphorins/Collapsins. Cell, 1999, 97, 551-552.	28.9	405
178	Plasminogen-Related Growth Factor and Semaphorin Receptors: A Gene Superfamily Controlling Invasive Growth. Experimental Cell Research, 1999, 253, 88-99.	2.6	61
179	C-met activation is necessary but not sufficient for liver colonization by B16 murine melanoma cells. Clinical and Experimental Metastasis, 1998, 16, 253-265.	3.3	18
180	Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature, 1998, 391, 285-288.	27.8	485

#	Article	IF	CITATIONS
181	Overexpression of the RON gene in human breast carcinoma. Oncogene, 1998, 16, 2927-2933.	5.9	190
182	Expression ofMet protein and urokinase-type plasminogen activator receptor (uPA-R) in papillary carcinoma of the thyroid. , 1998, 186, 287-291.		41
183	Plexin A Is a Neuronal Semaphorin Receptor that Controls Axon Guidance. Cell, 1998, 95, 903-916.	28.9	424
184	Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14379-14383.	7.1	96
185	Protein tyrosine phosphatase PTP-S binds to the juxtamembrane region of the hepatocyte growth factor receptor Met. Biochemical Journal, 1998, 336, 235-239.	3.7	32
186	Interactions between scatter factors and their receptors: hints for therapeutic applications. FASEB Journal, 1998, 12, 1267-1280.	0.5	77
187	Negative/Low Expression of the Met/Hepatocyte Growth Factor Receptor Identifies Papillary Thyroid Carcinomas with High Risk of Distant Metastases ¹ . Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2322-2328.	3.6	64
188	Ezrin Is an Effector of Hepatocyte Growth Factor–mediated Migration and Morphogenesis in Epithelial Cells. Journal of Cell Biology, 1997, 138, 423-434.	5.2	290
189	A Natural Hepatocyte Growth Factor/Scatter Factor Autocrine Loop in Myoblast Cells and the Effect of the Constitutive Met Kinase Activation on Myogenic Differentiation. Journal of Cell Biology, 1997, 137, 1057-1068.	5.2	165
190	Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine and Growth Factor Reviews, 1997, 8, 129-142.	7.2	102
191	A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13868-13872.	7.1	90
192	Regulation of the urokinase-type plasminogen activator gene by the oncogene Tpr-Met involves GRB2. Oncogene, 1997, 14, 705-711.	5.9	51
193	Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene, 1997, 14, 2417-2423.	5.9	144
194	Gab1 coupling to the HGF/Met receptor multifunctional docking site requires binding of Grb2 and correlates with the transforming potential. Oncogene, 1997, 15, 3103-3111.	5.9	122
195	"Invasive-growth―signaling by the Met/HGF receptor. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1333, M41-M51.	7.4	30
196	Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes. EMBO Journal, 1997, 16, 495-503.	7.8	156
197	Control of invasive growth by the HGF receptor family. Journal of Cellular Physiology, 1997, 173, 183-186.	4.1	35
198	Scatter Factor Receptors are Key Players in a Unique Multistep Program Leading to Invasive Growth. Novartis Foundation Symposium, 1997, 212, 133-154.	1.1	8

#	Article	IF	CITATIONS
199	Negative/Low Expression of the Met/Hepatocyte Growth Factor Receptor Identifies Papillary Thyroid Carcinomas with High Risk of Distant Metastases. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2322-2328.	3.6	63
200	Uncoupling of Grb2 from the Met Receptor In Vivo Reveals Complex Roles in Muscle Development. Cell, 1996, 87, 531-542.	28.9	306
201	A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 674-678.	7.1	169
202	The hepatocyte growth factor receptor (MET): An unconventional transducer of mitogenic and motogenic signals. Growth Factors and Cytokines in Health and Disease, 1996, 1, 465-490.	0.2	1
203	Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro Proceedings of the United States of America, 1996, 93, 7644-7648.	7.1	202
204	EXPRESSION OFMet PROTEIN IN THYROID TUMOURS. , 1996, 180, 266-270.		79
205	Over-expression of hepatocyte growth factor in human Kaposi's sarcoma. , 1996, 65, 168-172.		36
206	Overexpression of the met/HGF receptor in renal cell carcinomas. , 1996, 69, 212-217.		127
207	The HGF receptor family: unconventional signal transducers for invasive cell growth. Genes To Cells, 1996, 1, 347-354.	1.2	67
208	The HIV-1 Nef Protein Interferes with Phosphatidylinositol 3-Kinase Activation 1. Journal of Biological Chemistry, 1996, 271, 6590-6593.	3.4	55
209	Specific Uncoupling of GRB2 from the Met Receptor. Journal of Biological Chemistry, 1996, 271, 14119-14123.	3.4	141
210	Control of Invasive Cell Growth by the Met Family Oncogenes. , 1996, , 23-43.		0
211	Overexpression of c-met protooncogene product and raised Ki67 index in hepatocellular carcinomas with respect to benign liver conditions. Hepatology, 1995, 21, 1543-1546.	7.3	35
212	In Vivo Activation of <i>met</i> Tyrosine Kinase by Heterodimeric Hepatocyte Growth Factor Molecule Promotes Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1857-1865.	2.4	89
213	Biological Activation of pro-HGF (Hepatocyte Growth Factor) by Urokinase Is Controlled by a Stoichiometric Reaction. Journal of Biological Chemistry, 1995, 270, 603-611.	3.4	232
214	Overexpression of the C-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. Journal of Endocrinological Investigation, 1995, 18, 134-139.	3.3	63
215	Overexpression of c-met protooncogene product and raised Ki67 index in hepatocellular carcinomas with respect to benign liver conditions*1. Hepatology, 1995, 21, 1543-1546.	7.3	6

Structure and functions of the HGF receptor (c-Met). , 1995, , 51-70.

#	Article	IF	CITATIONS
217	Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors Journal of Cell Biology, 1994, 127, 1743-1754.	5.2	128
218	Overexpression of theMET/HGF receptor in ovarian cancer. International Journal of Cancer, 1994, 58, 658-662.	5.1	208
219	A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell, 1994, 77, 261-271.	28.9	980
220	Identification of functional domains in the hepatocyte growth factor and its receptor by molecular engineering. Journal of Biotechnology, 1994, 37, 109-122.	3.8	54
221	Immunohistochemistry with antibodies to hepatocyte growth factor and its receptor protein (c-MET) in human brain tissues. Brain Research, 1994, 637, 308-312.	2.2	74
222	Transfer of motogenic and invasive response to scatter factor/hepatocyte growth factor by transfection of human MET protooncogene Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 649-653.	7.1	152
223	Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. British Journal of Cancer, 1993, 68, 746-750.	6.4	184
224	A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11574-11578.	7.1	219
225	Regional mapping of the human hepatocyte growth factor (HGF)-scatter factor gene to chromosome 7q21.1. Genomics, 1992, 13, 912-914.	2.9	26
226	Karyotypic analysis of gastric carcinoma cell lines carrying an amplified c-met oncogene. Cancer Genetics and Cytogenetics, 1992, 64, 170-173.	1.0	68
227	The Receptor for the Hepatocyte Growth Factor-Scatter Factor: Ligand-Dependent and Phosphorylation-Dependent Regulation of Kinase Activity. , 1992, , 301-310.		0
228	Constitutively activatedneu oncoprotein tyrosine kinase interferes with growth factor-induced signals for gene activation. Journal of Cellular Biochemistry, 1991, 45, 69-81.	2.6	7
229	The receptor encoded by the human Câ€∢i>MET oncogene is expressed in hepatocytes, epithelial cells and solid tumors. International Journal of Cancer, 1991, 49, 323-328.	5.1	295
230	Ligand-Independent Tyrosine Phosphorylation of the Receptor Encoded by thec-neuOncogene. Growth Factors, 1991, 5, 233-242.	1.7	5
231	Regulation by EGF is maintained in an overexpressed chimeric EGFR/neureceptor tyrosine kinase. Journal of Cellular Biochemistry, 1990, 42, 123-133.	2.6	12
232	Solubilization of the receptor for the neuropeptide gastrin-releasing peptide (bombesin) with functional ligand binding properties. Biochemistry, 1990, 29, 5153-5160.	2.5	25
233	Characterization of the detergent solubilized receptor for gastrin-releasing peptide. Peptides, 1990, 11, 737-745.	2.4	3
234	Kinetics of tyrosine phosphorylation and internalization of human EGF receptors overexpressed in NIH 3T3 fibroblasts. Experimental Cell Research, 1990, 191, 323-327.	2.6	5

#	Article	IF	CITATIONS
235	Lipid characteristics of RSV-transformed Balb/c 3T3 cell lines with different spontaneous metastatic potentials. Lipids, 1989, 24, 685-690.	1.7	21
236	Biochemical and immunological properties of the human carcinoma antigen car-5 defined by the monoclonal antibody BD-5. International Journal of Cancer, 1989, 44, 67-74.	5.1	8
237	Blocked and not blocked whole-ricin-antibody immunotoxins: Intraperitoneal therapy of human tumour xenografted in nude mice. Cancer Immunology, Immunotherapy, 1989, 29, 185-92.	4.2	10
238	Vanadate-treated baby hamster kidney fibroblasts show cytoskeleton and adhesion patterns similar to their rous sarcoma virus-transformed counterparts. Journal of Cellular Biochemistry, 1988, 37, 151-159.	2.6	36
239	Evidence for autocrine activation of a tyrosine kinase in a human gastric carcinoma cell line. Journal of Cellular Biochemistry, 1988, 38, 229-236.	2.6	15
240	Comparison of blocked and non-blocked ricin-antibody immunotoxins against human gastric carcinoma and colorectal adenocarcinoma cell lines. Cancer Immunology, Immunotherapy, 1988, 27, 233-40.	4.2	17
241	A Tyrosine Protein Kinase Activated by Bombesin in Normal Fibroblasts and Small Cell Carcinomas. Annals of the New York Academy of Sciences, 1988, 547, 293-302.	3.8	5
242	Effect of the growth conditions on the expression of cell-surface-associated platelet-derived growth factor receptors in mouse fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 971, 351-357.	4.1	0
243	Effect of the growth conditions on the expression of cell-surface-associated platelet-derived growth factor receptors in mouse fibroblasts. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 971, 351-357.	1.0	2
244	The tyrosine kinase associated with the bombesin receptor complex: Evidences for autocrine activation in small cell lung carcinomas. Lung Cancer, 1988, 4, 190-195.	2.0	1
245	Activation of the protein-tyrosine kinase associated with the bombesin receptor complex in small cell lung carcinomas Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 2166-2170.	7.1	37
246	Detection of Deregulated Tyrosine-Kinases in Experimental and Human Metastatic Tumors. Advances in Experimental Medicine and Biology, 1988, 233, 303-308.	1.6	0
247	Interaction of Fibroblasts, Hemopoietic Cells and Platelets with Extracellular Matrix: Characterization and Role of a Common Cell Surface Glycoprotein. Annals of the New York Academy of Sciences, 1987, 511, 65-76.	3.8	1
248	Protein Tyrosine Kinases Associated with Human Malignancies. Annals of the New York Academy of Sciences, 1987, 511, 256-261.	3.8	14
249	Expression of the monoclonal antibody-defined CAR-3 epitope on neoplastic and preneoplastic lesions of the colon mucosa. European Journal of Cancer & Clinical Oncology, 1987, 23, 923-932.	0.7	5
250	Proteins phosphorylated on tyrosine as markers of human tumor cell lines. International Journal of Cancer, 1987, 39, 482-487.	5.1	18
251	PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse Swiss 3T3 and human skin fibroblasts. Biochemical and Biophysical Research Communications, 1986, 137, 343-350.	2.1	48
252	Bombesin stimulation of c-fos and c-myc gene expression in cultures of Swiss 3T3 cells. Experimental Cell Research, 1986, 167, 276-280.	2.6	48

#	Article	IF	CITATIONS
253	A 135000 molecular weight plasma membrane glycoprotein involved in fibronectin-mediated cell adhesion. Experimental Cell Research, 1986, 163, 47-62.	2.6	75
254	In vivo phosphorylation and dephosphorylation of the platelet-derived growth factor receptor studied by immunoblot analysis with phosphotyrosine antibodies. Biochimica Et Biophysica Acta - General Subjects, 1986, 881, 54-61.	2.4	49
255	Protein phosphorylation at tyrosine residues INv-abl transformed mouse lymphocytes and fibroblasts. International Journal of Cancer, 1986, 37, 623-628.	5.1	12
256	Immunological detection of proteins phosphorylated at tyrosine in cells stimulated by growth factors or transformed by retroviral-oncogene-coded tyrosine kinases. FEBS Journal, 1986, 158, 383-391.	0.2	36
257	Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Experimental Cell Research, 1985, 159, 141-157.	2.6	388
258	Organization of cytoskeleton and fibronectin matrix in rous sarcoma virus (RSV)-transformed fibroblast lines with different metastatic potential. European Journal of Cancer & Clinical Oncology, 1985, 21, 85-96.	0.7	9
259	Role of heterochromatin variation in the instability of a marker chromosome during tumor progression. Cancer Genetics and Cytogenetics, 1985, 15, 283-291.	1.0	14
260	Phosphoinositides are not phosphorylated by the very active tyrosine protein kinase from the murine lymphoma LSTRA. Biochemical and Biophysical Research Communications, 1985, 132, 481-489.	2.1	5
261	Cleavage of a 135 kD cell surface glycoprotein correlates with loss of fibroblast adhesion to fibronectin. Experimental Cell Research, 1985, 156, 182-190.	2.6	100
262	Monoclonal Antibodies to the Collagen Binding Domain of Human Plasma Fibronectin. Pathobiology, 1984, 52, 225-236.	3.8	4
263	Identification of a 58,000 Daltons phosphoprotein with tyrosine protein kinase activity in a murine lymphoma cell line. Biochemical and Biophysical Research Communications, 1984, 122, 563-570.	2.1	26
264	Immunofluorescence localization of phosphotyrosine containing proteins in RSV-transformed mouse fibroblasts*1. Experimental Cell Research, 1984, 154, 112-124.	2.6	27
265	Metastatic clones selected from an RSV-induced mouse sarcoma share a common marker chromosome. International Journal of Cancer, 1983, 31, 455-461.	5.1	19
266	Characterization of T lymphocytes mediatingin vivo protection against RSV-induced murine sarcomas. International Journal of Cancer, 1983, 31, 757-764.	5.1	11
267	Dissection of the antigenic determinants expressed on the cell surface of rsv-transformed fibroblasts by monoclonal antibodies. International Journal of Cancer, 1982, 29, 477-481.	5.1	6
268	Mouse fibroblasts transformed by rous sarcoma virus express a virus-specific non-virion transplantation antigen. International Journal of Cancer, 1981, 27, 797-805.	5.1	11
269	Identification and partial characterization of five major membrane glycoproteins of BHK fibroblasts. Journal of Membrane Biology, 1980, 53, 55-61.	2.1	13
270	Interaction between cellular and viral genes in the expression of the RSV-induced transformation-specific cell-surface antigen VCSA. International Journal of Cancer, 1980, 25, 355-362.	5.1	6

#	Article	IF	CITATIONS
271	Cell surface changes during muscle differentiation in vitro: A study with the probe 2,4,6-trinitrobenzene sulphonate. Cell Differentiation, 1979, 8, 1-9.	0.4	6
272	A virus-induced non-virion antigen specific for transformation at the surface of RSV-transformed fibroblasts. Nature, 1978, 273, 381-383.	27.8	12
273	Tumor-specific and tumor-associated membrane antigens of rous sarcoma virus transformed hamster fibroblasts. International Journal of Cancer, 1978, 22, 55-62.	5.1	7
274	Immunochemical purification of probe-labeled plasma membrane proteins: An approach to the molecular anatomy of the cell surface. Journal of Supramolecular Structure, 1978, 8, 39-49.	2.3	6
275	Plasma membrane proteins exposed on the outer surface of control and Rous sarcoma virus-transformed hamster fibroblasts. Experimental Cell Research, 1977, 110, 143-152.	2.6	8
276	A solid-state competitive binding radioimmunoassay for measurement of antigens solubilized from membranes. Journal of Immunological Methods, 1976, 9, 267-272.	1.4	17
277	Binding of serum polypeptides to the plasma membrane outer surface. FEBS Letters, 1976, 67, 364-367.	2.8	14
278	Involvement of sialic acids in the immunological specificity of plasma membrane glycoproteins. Immunochemistry, 1976, 13, 97-102.	1.2	4
279	Induction of resistance or enhancement to a transplantable murine plasmacytoma by transfer of non-immune leucocytes. British Journal of Cancer, 1976, 34, 233-238.	6.4	7
280	Studies on the outer surface of normal and RSV-transformed BHK fibroblast plasma membrane. Experimental Cell Research, 1975, 93, 402-410.	2.6	16
281	Antigenic and immunogenic properties of membrane proteins solubilized by sodium desoxycholate, papain digestion or high ionic strength. Immunochemistry, 1975, 12, 9-17.	1.2	28
282	Neuraminidase sensitive antigenic determinants of plasma cell tumor membrane glycoproteins. FEBS Letters, 1975, 51, 351-354.	2.8	8
283	A comparative study of SV40-transformed fibroblast plasma membrane proteins labelled by enzymatic iodination or with trinitrobenzene sulfonate. FEBS Letters, 1974, 47, 107-112.	2.8	18
284	Effect of solubilized membrane antigens and tumour bearer serum on tumour growth in syngeneic hosts. British Journal of Cancer, 1974, 30, 365-369.	6.4	8
285	Plasma-cell and tumor-associated membrane antigens of mouse plasmacytoma MOPC-315 and MOPC-460. International Journal of Cancer, 1973, 12, 613-625.	5.1	6
286	Growth of Syngeneic Tumours in Unimmunized Newborn and Adult Hosts. British Journal of Cancer, 1973, 27, 120-127.	6.4	15
287	Affinity chromatography purification of erythrocyte membrane proteins after selective labeling with trinitrobenzene sodium sulfonate. Biochimica Et Biophysica Acta - Biomembranes, 1973, 311, 214-221.	2.6	27
288	Two dimensional distribution of concanavalin-A receptor molecules on fibroblast and lymphocyte plasma membranes. FEBS Letters, 1972, 27, 256-258.	2.8	49

#	Article	IF	CITATIONS
289	Antigen-dependent mast cell differentiation in vitro. Experimental Cell Research, 1972, 72, 404-408.	2.6	1
290	Morphological and biochemical changes of rat prostate organ cultures and their reaction to prostate extracts. Life Sciences, 1971, 10, 325-331.	4.3	0
291	Multinucleated giant cells in organ cultures of spleen. Experientia, 1969, 25, 61-62.	1.2	1