Arthur E Weis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5772835/publications.pdf Version: 2024-02-01

Adthind F M/Fig

#	Article	IF	CITATIONS
1	Ecological and Evolutionary Stochasticity Shape Natural Selection. American Naturalist, 2020, 195, 705-716.	2.1	4
2	Comparing methods for controlled capture and quantification of pollen in <i>Cannabis sativa</i> . Applications in Plant Sciences, 2020, 8, e11389.	2.1	11
3	Variation in pollinator-mediated plant reproduction across an urbanization gradient. Oecologia, 2020, 192, 1073-1083.	2.0	21
4	Isolation by phenology synergizes isolation by distance across a continuous landscape. New Phytologist, 2019, 224, 1215-1228.	7.3	8
5	Artificial seed aging reveals the invisible fraction: Implications for evolution experiments using the resurrection approach. Evolutionary Ecology, 2019, 33, 811-824.	1.2	14
6	Estimating the impact of divergent mating phenology between residents and migrants on the potential for gene flow. Ecology and Evolution, 2019, 9, 3770-3783.	1.9	4
7	Phenological responses to multiple environmental drivers under climate change: insights from a longâ€ŧerm observational study and a manipulative field experiment. New Phytologist, 2018, 218, 517-529.	7.3	82
8	Detecting the "invisible fraction―bias in resurrection experiments. Evolutionary Applications, 2018, 11, 88-95.	3.1	43
9	Using the resurrection approach to understand contemporary evolution in changing environments. Evolutionary Applications, 2018, 11, 17-28.	3.1	91
10	Two decades of evolutionary changes in <i>Brassica rapa</i> in response to fluctuations in precipitation and severe drought. Evolution; International Journal of Organic Evolution, 2018, 72, 2682-2696.	2.3	42
11	Selection for pollen competitive ability in mixed-mating systems. Evolution; International Journal of Organic Evolution, 2018, 72, 2513-2536.	2.3	17
12	Ecology: Plant Parasites Victimized by a Parasitic Plant. Current Biology, 2018, 28, R877-R879.	3.9	0
13	Phenological mismatch and the effectiveness of assisted gene flow. Conservation Biology, 2017, 31, 547-558.	4.7	21
14	Temporal population genetic structure in the pollen pool for flowering time: A field experiment withBrassica rapa(Brassicaceae). American Journal of Botany, 2017, 104, 1569-1580.	1.7	6
15	The causes of selection on flowering time through male fitness in a hermaphroditic annual plant. Evolution; International Journal of Organic Evolution, 2016, 70, 111-125.	2.3	15
16	Project Baseline: An unprecedented resource to study plant evolution across space and time. American Journal of Botany, 2016, 103, 164-173.	1.7	58
17	Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152635.	2.6	10
18	Inheritance of Rapid Cycling in <i>Brassica rapa</i> Fast Plants: Dominance That Increases with Photoperiod. International Journal of Plant Sciences, 2015, 176, 859-868.	1.3	6

#	Article	IF	CITATIONS
19	The success of assisted colonization and assisted gene flow depends on phenology. Global Change Biology, 2015, 21, 3786-3799.	9.5	37
20	Hard and soft selection on phenology through seasonal shifts in the general and social environments: A study on plant emergence time. Evolution; International Journal of Organic Evolution, 2015, 69, 1361-1374.	2.3	22
21	What drives selection on flowering time? An experimental manipulation of the inherent correlation between genotype and environment. Evolution; International Journal of Organic Evolution, 2015, 69, 2018-2033.	2.3	24
22	Pollen packing affects the function of pollen on corbiculate bees but not non-corbiculate bees. Arthropod-Plant Interactions, 2015, 9, 197-203.	1.1	61
23	On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time. Journal of Evolutionary Biology, 2015, 28, 699-714.	1.7	12
24	Simultaneous pulsed flowering in a temperate legume: causes and consequences of multimodality in the shape of floral display schedules. Journal of Ecology, 2015, 103, 316-327.	4.0	7
25	Withinâ€plant variation in reproductive investment: consequences for selection on flowering time. Journal of Evolutionary Biology, 2015, 28, 65-79.	1.7	23
26	The strength of assortative mating for flowering date and its basis in individual variation in flowering schedule. Journal of Evolutionary Biology, 2014, 27, 2138-2151.	1.7	27
27	Temporal variation in phenotypic gender and expected functional gender within and among individuals in an annual plant. Annals of Botany, 2014, 114, 167-177.	2.9	9
28	The shape of selection: using alternative fitness functions to test predictions for selection on flowering time. Evolutionary Ecology, 2014, 28, 885-904.	1.2	35
29	Describing Flowering Schedule Shape through Multivariate Ordination. International Journal of Plant Sciences, 2014, 175, 70-79.	1.3	7
30	Gall insects and selection on plant vigor: can susceptibility compromise success in competition?. Arthropod-Plant Interactions, 2014, 8, 205-212.	1.1	1
31	The impact of snow accumulation on a heath spider community in a sub-Arctic landscape. Polar Biology, 2013, 36, 885-894.	1.2	11
32	Climate change alters reproductive isolation and potential gene flow in an annual plant. Evolutionary Applications, 2009, 2, 481-488.	3.1	46
33	The Resurrection Initiative: Storing Ancestral Genotypes to Capture Evolution in Action. BioScience, 2008, 58, 870-873.	4.9	86
34	Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1278-1282.	7.1	920
35	Spatial scale of local adaptation and population genetic structure in a miniature succulent, Argyroderma pearsonii. New Phytologist, 2007, 174, 904-914.	7.3	15
36	Time after time: flowering phenology and biotic interactions. Trends in Ecology and Evolution, 2007, 22, 432-439.	8.7	556

#	Article	IF	CITATIONS
37	EVOLUTIONARY RADIATION OF "STONE PLANTS" IN THE GENUS ARGYRODERMA (AIZOACEAE): UNRAVELING THE EFFECTS OF LANDSCAPE, HABITAT, AND FLOWERING TIME. Evolution; International Journal of Organic Evolution, 2006, 60, 39-55.	2.3	65
38	Coexistence and differentiation of 'flowering stones': the role of local adaptation to soil microenvironment. Journal of Ecology, 2006, 94, 322-335.	4.0	60
39	Herbivory tolerance and coevolution: an alternative to the arms race?. New Phytologist, 2006, 170, 423-425.	7.3	10
40	EVOLUTIONARY RADIATION OF "STONE PLANTS―IN THE GENUS ARGYRODERMA (AIZOACEAE): UNRAVELING THE EFFECTS OF LANDSCAPE, HABITAT, AND FLOWERING TIME. Evolution; International Journal of Organic Evolution, 2006, 60, 39.	ີ 2.3	2
41	Evolutionary radiation of "stone plants" in the genus Argyroderma (Aizoaceae): unraveling the effects of landscape, habitat, and flowering time. Evolution; International Journal of Organic Evolution, 2006, 60, 39-55.	2.3	61
42	Direct and indirect assortative mating: a multivariate approach to plant flowering schedules. Journal of Evolutionary Biology, 2005, 18, 536-546.	1.7	36
43	Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to <i>Brassica rapa</i> . American Journal of Botany, 2004, 91, 825-836.	1.7	101
44	Stress-induced assortative mating and the evolution of stress resistance. Ecology Letters, 2004, 7, 785-793.	6.4	15
45	Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theoretical and Applied Genetics, 2004, 109, 806-814.	3.6	68
46	Bagging the lag. Nature, 2001, 409, 992-993.	27.8	2
47	Will plant vigor and tolerance be genetically correlated? Effects of intrinsic growth rate and self-limitation on regrowth. Evolutionary Ecology, 2000, 14, 331-352.	1.2	38
48	The Diverse Effects of Intraspecific Competition on the Selective Advantage to Resistance: A Model and Its Predictions. American Naturalist, 2000, 156, 276-292.	2.1	44
49	THE CONSEQUENCES OF FLORAL HERBIVORY FOR POLLINATOR SERVICE TOISOMERIS ARBOREA. Ecology, 1999, 80, 125-134.	3.2	153
50	The Effect of Floral Herbivory on Male and Female Reproductive Success in Isomeris arborea. Ecology, 1999, 80, 135.	3.2	26
51	THE EFFECT OF FLORAL HERBIVORY ON MALE AND FEMALE REPRODUCTIVE SUCCESS INISOMERIS ARBOREA. Ecology, 1999, 80, 135-149.	3.2	113
52	The Consequences of Floral Herbivory for Pollinator Service to Isomeris arborea. Ecology, 1999, 80, 125.	3.2	75
53	Adaptation of Coyote Brush to the Abiotic Environment and Its Effects on Susceptibility to a Gall-Making Midge. Oikos, 1999, 84, 199.	2.7	11
54	Title is missing!. Plant Ecology, 1998, 134, 151-162.	1.6	43

#	Article	IF	CITATIONS
55	Inbreeding and outcrossing in Yucca whipplei: consequences for the reproductive success of plant and pollinator. Ecology Letters, 1998, 1, 21-24.	6.4	10
56	Differential abortion in the yucca. Nature, 1995, 376, 557-558.	27.8	51
57	Direct and Indirect Effects of Prior Grazing of Goldenrod upon the Performance of a Leaf Beetle. Ecology, 1995, 76, 426-436.	3.2	33
58	Variable Selection on Eurosta's Gall Size. II. A Path Analysis of the Ecological Factors Behind Selection. Evolution; International Journal of Organic Evolution, 1994, 48, 734.	2.3	13
59	VARIABLE SELECTION ON <i>EUROSTA'</i> S GALL SIZE. II. A PATH ANALYSIS OF THE ECOLOGICAL FACTORS BEHIND SELECTION. Evolution; International Journal of Organic Evolution, 1994, 48, 734-745.	2.3	32
60	Depth Associations and Utilization Patterns in the Parasitoid Guild of Asphondylia rudbeckiaeconspicua (Diptera: Cecidomyiidae). Environmental Entomology, 1994, 23, 115-121.	1.4	6
61	Host gall size predicts host quality for the parasitoidEurytoma gigantea (Hymenoptera: eurytomidae), but can the parasitoid tell?. Journal of Insect Behavior, 1993, 6, 591-602.	0.7	9
62	Galls from the Inside Out. Ecology, 1993, 74, 1910-1911.	3.2	0
63	Variable Selection on Eurosta's Gall Size, I: The Extent and Nature of Variation in Phenotypic Selection. Evolution; International Journal of Organic Evolution, 1992, 46, 1674.	2.3	38
64	VARIABLE SELECTION ON <i>EUROSTA</i> 'S GALL SIZE, I: THE EXTENT AND NATURE OF VARIATION IN PHENOTYPIC SELECTION. Evolution; International Journal of Organic Evolution, 1992, 46, 1674-1697.	2.3	87
65	Plant Genotype: A Variable Factor in Insect–Plant Interactions. , 1992, , 75-111.		18
66	Oviposition Behavior and Response to Plant Height by Eurosta solidaginis Fitch (Diptera: Tephritidae). Annals of the Entomological Society of America, 1990, 83, 509-514.	2.5	23
67	MEASURING SELECTION ON REACTION NORMS: AN EXPLORATION OF THE EUROSTAâ€SOLIDAGO SYSTEM. Evolution; International Journal of Organic Evolution, 1990, 44, 820-831.	2.3	107
68	Measuring Selection on Reaction Norms: An Exploration of the Eurosta-solidago System. Evolution; International Journal of Organic Evolution, 1990, 44, 820.	2.3	47
69	GENOTYPIC VARIATION AND INTEGRATION IN HISTOLOGICAL FEATURES OF THE GOLDENROD BALL GALL. American Journal of Botany, 1989, 76, 1541-1550.	1.7	11
70	Can there be an escalating arms race without coevolution? Implications from a host-parasitoid simulation. Evolutionary Ecology, 1989, 3, 361-370.	1.2	17
71	Variation in selection pressures on the goldenrod gall fly and the competitive interactions of its natural enemies. Oecologia, 1989, 79, 15-22.	2.0	79
72	Stressed Plants and What Bugs them. Ecology, 1989, 70, 1958-1958.	3.2	0

#	Article	IF	CITATIONS
73	Genotypic Variation and Integration in Histological Features of the Goldenrod Ball Gall. American Journal of Botany, 1989, 76, 1541.	1.7	8
74	GENETIC AND MATERNAL EFFECTS ON SEEDLING CHARACTERS OF SOLIDAGO ALTISSIMA (COMPOSITAE). American Journal of Botany, 1987, 74, 1476-1486.	1.7	37
75	Genetic and Maternal Effects on Seedling Characters of Solidago altissima (Compositae). American Journal of Botany, 1987, 74, 1476.	1.7	12
76	Evolution of Host-Plant Manipulation by Gall Makers: Ecological and Genetic Factors in the Solidago-eurosta System. American Naturalist, 1986, 127, 681-695.	2.1	143
77	Host gall size and oviposition success by the parasitoid Eurytoma gigantea. Ecological Entomology, 1985, 10, 341-348.	2.2	92
78	Potential Selective Pressures by Parasitoids on a Plant-Herbivore Interaction. Ecology, 1985, 66, 1261-1269.	3.2	122
79	Goldenrod Ball Gall Effects on Solidago altissima: 14C Translocation and Growth. Ecology, 1985, 66, 1902-1907.	3.2	99
80	Size, Function and Life History William A. Calder, III. Auk, 1985, 102, 434-435.	1.4	0
81	APICAL DOMINANCE ASSERTED OVER LATERAL BUDS BY THE GALL OF <i>RHABDOPHAGA STROBILOIDES</i> (DIPTERA: CECIDOMYIIDAE). Canadian Entomologist, 1984, 116, 1277-1279.	0.8	7
82	Manipulation of host plant development by the gall-midge Rhabdophaga strobiloides. Ecological Entomology, 1984, 9, 457-465.	2.2	67
83	Patterns of Parasitism by Torymus capite on Hosts Distributed in Small Patches. Journal of Animal Ecology, 1983, 52, 867.	2.8	40
84	Selective Pressures on Clutch Size in the Gall Maker Asteromyia Carbonifera. Ecology, 1983, 64, 688-695.	3.2	60
85	Use of Symbiotic Fungus by The Gall Maker Asteromyia Carbonifera to Inhibit Attack by the Parasitoid Torymus Capite. Ecology, 1982, 63, 1602-1605.	3.2	41
86	Resource Utilization Patterns in a Community of Gall-Attacking Parasitoids. Environmental Entomology, 1982, 11, 809-815.	1.4	39
87	Parasitoids and Competition. American Naturalist, 1980, 116, 876-881.	2.1	6