
Yoshifumi Futaana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5772766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moon-related nonthermal ions observed by Nozomi: Species, sources, and generation mechanisms. Journal of Geophysical Research, 2003, 108, SMP 15-1.	3.3	234
2	The loss of ions from Venus through the plasma wake. Nature, 2007, 450, 650-653.	27.8	168
3	Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space. Planetary and Space Science, 2009, 57, 2132-2134.	1.7	130
4	Strong influence of lunar crustal fields on the solar wind flow. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	125
5	First observation of a miniâ€magnetosphere above a lunar magnetic anomaly using energetic neutral atoms. Geophysical Research Letters, 2010, 37, .	4.0	114
6	Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus, 2011, 215, 475-484.	2.5	114
7	Mass composition of the escaping plasma at Mars. Icarus, 2006, 182, 320-328.	2.5	103
8	Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planetary and Space Science, 2008, 56, 873-880.	1.7	102
9	Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophysical Research Letters, 2010, 37, .	4.0	88
10	Measurements of the ion escape rates from Venus for solar minimum. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	86
11	The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. Journal of Geophysical Research E: Planets, 2015, 120, 1298-1309.	3.6	84
12	The interaction between the Moon and the solar wind. Earth, Planets and Space, 2012, 64, 237-245.	2.5	80
13	Solar Wind Interaction and Impact on the Venus Atmosphere. Space Science Reviews, 2017, 212, 1453-1509.	8.1	79
14	Ion escape from Mars as a function of solar wind conditions: A statistical study. Icarus, 2010, 206, 40-49.	2.5	72
15	Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERAâ€3 and MARSIS measurements. Journal of Geophysical Research, 2008, 113, .	3.3	70
16	Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets. Space Weather, 2014, 12, 187-204.	3.7	68
17	Longâ€ŧerm variation in the cloudâ€ŧracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. Journal of Geophysical Research E: Planets, 2013, 118, 37-46.	3.6	67
18	Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA-4. Planetary and Space Science, 2008, 56, 780-784.	1.7	64

#	Article	IF	CITATIONS
19	Atmospheric erosion of Venus during stormy space weather. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	60
20	Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki. Earth, Planets and Space, 2017, 69, .	2.5	60
21	Solar cycle effects on the ion escape from Mars. Geophysical Research Letters, 2013, 40, 6028-6032.	4.0	58
22	Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly. Geophysical Research Letters, 2013, 40, 262-266.	4.0	56
23	Seasonal variation of Martian pick-up ions: Evidence of breathing exosphere. Planetary and Space Science, 2015, 119, 54-61.	1.7	56
24	Mars Express investigations of Phobos and Deimos. Planetary and Space Science, 2014, 102, 18-34.	1.7	54
25	First ENA observations at Mars: ENA emissions from the martian upper atmosphere. Icarus, 2006, 182, 424-430.	2.5	53
26	Empirical energy spectra of neutralized solar wind protons from the lunar regolith. Journal of Geophysical Research, 2012, 117, .	3.3	53
27	lonospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planetary and Space Science, 2008, 56, 802-806.	1.7	48
28	Comparative analysis of Venus and Mars magnetotails. Planetary and Space Science, 2008, 56, 812-817.	1.7	48
29	Dynamics of solar wind protons reflected by the Moon. Journal of Geophysical Research, 2010, 115, .	3.3	48
30	Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes. Earth, Planets and Space, 2012, 64, 135-148.	2.5	47
31	Energetic neutral atom imaging of the lunar surface. Journal of Geophysical Research: Space Physics, 2013, 118, 3937-3945.	2.4	47
32	Ion flow and momentum transfer in the Venus plasma environment. Icarus, 2011, 215, 751-758.	2.5	46
33	The lunar wake current systems. Geophysical Research Letters, 2013, 40, 17-21.	4.0	46
34	Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections. Journal of Geophysical Research, 2008, 113, .	3.3	44
35	Energetic neutral atom observations of magnetic anomalies on the lunar surface. Journal of Geophysical Research, 2012, 117, .	3.3	44
36	Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planetary and Space Science, 2012, 60, 207-216.	1.7	43

#	Article	IF	CITATIONS
37	Global Marsâ€solar wind coupling and ion escape. Journal of Geophysical Research: Space Physics, 2017, 122, 8051-8062.	2.4	43
38	First ENA observations at Mars: Subsolar ENA jet. Icarus, 2006, 182, 413-423.	2.5	42
39	Protons in the nearâ€lunar wake observed by the Subâ€keV Atom Reflection Analyzer on board Chandrayaanâ€1. Journal of Geophysical Research, 2010, 115, .	3.3	42
40	Kinetic simulations of finite gyroradius effects in the lunar plasma environment on global, meso, and microscales. Planetary and Space Science, 2012, 74, 146-155.	1.7	42
41	First ENA observations at Mars: Charge exchange ENAs produced in the magnetosheath. Icarus, 2006, 182, 431-438.	2.5	39
42	Dependence of O ⁺ escape rate from the Venusian upper atmosphere on IMF directions. Geophysical Research Letters, 2013, 40, 1682-1685.	4.0	39
43	On vertical electric fields at lunar magnetic anomalies. Geophysical Research Letters, 2014, 41, 2243-2249.	4.0	39
44	The flapping motion of the Venusian magnetotail: Venus Express observations. Journal of Geophysical Research: Space Physics, 2015, 120, 5593-5602.	2.4	38
45	A new view on the solar wind interaction with the Moon. Geoscience Letters, 2015, 2, .	3.3	37
46	Effects of protons reflected by lunar crustal magnetic fields on the global lunar plasma environment. Journal of Geophysical Research: Space Physics, 2014, 119, 6095-6105.	2.4	36
47	Counterstreaming electrons in the near vicinity of the Moon observed by plasma instruments on board NOZOMI. Journal of Geophysical Research, 2001, 106, 18729-18740.	3.3	35
48	Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission. Journal of Earth System Science, 2005, 114, 749-760.	1.3	35
49	Proton and hydrogen atom transport in the Martian upper atmosphere with an induced magnetic field. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	35
50	Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum. Geophysical Research Letters, 2013, 40, 477-481.	4.0	35
51	Modeling solar energetic particle events using ENLIL heliosphere simulations. Space Weather, 2017, 15, 934-954.	3.7	35
52	lon escape at Mars: Comparison of a 3-D hybrid simulation with Mars Express IMA/ASPERA-3 measurements. Icarus, 2006, 182, 350-359.	2.5	34
53	Morphology of magnetic field in nearâ€Venus magnetotail: Venus express observations. Journal of Geophysical Research: Space Physics, 2014, 119, 8838-8847.	2.4	34
54	Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate. Geophysical Research Letters, 2016, 43, 10,574.	4.0	34

#	Article	IF	CITATIONS
55	Low energy neutral atoms imaging of the Moon. Planetary and Space Science, 2006, 54, 132-143.	1.7	33
56	Solar wind―and EUVâ€dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements. Journal of Geophysical Research: Space Physics, 2017, 122, 7279-7290.	2.4	33
57	Direct Measurements of Energetic Neutral Hydrogen in the Interplanetary Medium. Astrophysical Journal, 2006, 644, 1317-1325.	4.5	32
58	Observational evidence of alphaâ \in particle capture at Mars. Geophysical Research Letters, 2011, 38, .	4.0	32
59	Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock. Journal of Geophysical Research: Space Physics, 2018, 123, 7241-7256.	2.4	32
60	Pre-flight Calibration and Near-Earth Commissioning Results of the Mercury Plasma Particle Experiment (MPPE) Onboard MMO (Mio). Space Science Reviews, 2021, 217, 1.	8.1	32
61	Vertical propagation of planetary-scale waves in variable background winds in the upper cloud region of Venus. Icarus, 2015, 248, 560-568.	2.5	31
62	The electric wind of Venus: A global and persistent "polar windâ€â€like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophysical Research Letters, 2016, 43, 5926-5934.	4.0	31
63	Tailward flow of energetic neutral atoms observed at Mars. Journal of Geophysical Research, 2008, 113, .	3.3	30
64	Scattering function for energetic neutral hydrogen atoms off the lunar surface. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	30
65	Heavy-ion flux enhancement in the vicinity of the Martian ionosphere during CIR passage: Mars Express ASPERA-3 observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29
66	First direct observation of sputtered lunar oxygen. Journal of Geophysical Research: Space Physics, 2014, 119, 709-722.	2.4	29
67	Ion Escape From Mars Through Time: An Extrapolation of Atmospheric Loss Based on 10 Years of Mars Express Measurements. Journal of Geophysical Research E: Planets, 2018, 123, 3051-3060.	3.6	29
68	Multipoint Observations of the June 2012 Interacting Interplanetary Flux Ropes. Frontiers in Astronomy and Space Sciences, 2019, 6, .	2.8	29
69	A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations. Journal of Geophysical Research, 2012, 117, .	3.3	28
70	H ⁺ /O ⁺ Escape Rate Ratio in the Venus Magnetotail and its Dependence on the Solar Cycle. Geophysical Research Letters, 2018, 45, 10,805.	4.0	28
71	First ENA observations at Mars: Solar-wind ENAs on the nightside. Icarus, 2006, 182, 439-447.	2.5	27
72	Chandrayaan-1 observations of backscattered solar wind protons from the lunar regolith: Dependence on the solar wind speed. Journal of Geophysical Research E: Planets, 2014, 119, 968-975.	3.6	27

#	Article	IF	CITATIONS
73	Exospheres and Energetic Neutral Atoms of Mars, Venus and Titan. Space Science Reviews, 2011, 162, 213-266.	8.1	25
74	Radio occultation experiment of the Venus atmosphere and ionosphere with the Venus orbiter Akatsuki. Earth, Planets and Space, 2011, 63, 493-501.	2.5	25
75	Enhanced ionization of the Martian nightside ionosphere during solar energetic particle events. Geophysical Research Letters, 2014, 41, 793-798.	4.0	25
76	Technique for diagnosing the flapping motion of magnetotail current sheets based on singleâ€point magnetic field analysis. Journal of Geophysical Research: Space Physics, 2015, 120, 3462-3474.	2.4	25
77	Properties of planetward ion flows in Venus' magnetotail. Icarus, 2016, 274, 73-82.	2.5	25
78	The Venusian Atmospheric Oxygen Ion Escape: Extrapolation to the Early Solar System. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006336.	3.6	25
79	Global Response of Martian Plasma Environment to an Interplanetary Structure: From Ena and Plasma Observations at Mars. Space Science Reviews, 2007, 126, 315-332.	8.1	23
80	The effects of lunar surface plasma absorption and solar wind temperature anisotropies on the solar wind proton velocity space distributions in the lowâ€altitude lunar plasma wake. Journal of Geophysical Research, 2012, 117, .	3.3	23
81	Energetic Neutral Atoms (ENA) at Mars: Properties of the hydrogen atoms produced upstream of the martian bow shock and implications for ENA sounding technique around non-magnetized planets. Icarus, 2006, 182, 448-463.	2.5	22
82	The Venusian induced magnetosphere: A case study of plasma and magnetic field measurements on the Venus Express mission. Planetary and Space Science, 2008, 56, 796-801.	1.7	22
83	Predicting interplanetary shock arrivals at Earth, Mars, and Venus: A realâ€ŧime modeling experiment following the solar flares of 5–14 December 2006. Journal of Geophysical Research, 2008, 113, .	3.3	22
84	O ⁺ outflow channels around Venus controlled by directions of the interplanetary magnetic field: Observations of high energy O ⁺ ions around the terminator. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	22
85	Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars. Annales Geophysicae, 2011, 29, 511-528.	1.6	22
86	Backscattered energetic neutral atoms from the Moon in the Earth's plasma sheet observed by Chandarayaanâ€1/Subâ€keV Atom Reflecting Analyzer instrument. Journal of Geophysical Research: Space Physics, 2014, 119, 3573-3584.	2.4	22
87	Proton and alpha particle precipitation onto the upper atmosphere of Venus. Planetary and Space Science, 2015, 113-114, 369-377.	1.7	22
88	IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express. Space Science Reviews, 2007, 126, 239-266.	8.1	21
89	Mars Under Primordial Solar Wind Conditions: Mars Express Observations of the Strongest CME Detected at Mars Under Solar Cycle #24 and its Impact on Atmospheric Ion Escape. Geophysical Research Letters, 2017, 44, 10,805.	4.0	21
90	An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions. Geophysical Research Letters, 2020, 47, e2020GL087806.	4.0	21

#	Article	IF	CITATIONS
91	Investigation of the Influence of Magnetic Anomalies on Ion Distributions at Mars. Space Science Reviews, 2007, 126, 355-372.	8.1	20
92	Tailward flow of energetic neutral atoms observed at Venus. Journal of Geophysical Research, 2008, 113, .	3.3	20
93	First observation of energetic neutral atoms in the Venus environment. Planetary and Space Science, 2008, 56, 807-811.	1.7	19
94	Backscattered solar wind protons by Phobos. Journal of Geophysical Research, 2010, 115, .	3.3	19
95	Radio occultation measurement of the electron density near the lunar surface using a subsatellite on the SELENE mission. Journal of Geophysical Research, 2012, 117, .	3.3	19
96	Effects of the solar wind and the solar EUV flux on O+ escape rates from Venus. Icarus, 2019, 321, 379-387.	2.5	19
97	MAVEN Observations of Periodic Low-altitude Plasma Clouds at Mars. Astrophysical Journal Letters, 2021, 922, L33.	8.3	19
98	ENA detection in the dayside of Mars: ASPERA-3 NPD statistical study. Planetary and Space Science, 2008, 56, 840-845.	1.7	18
99	Substorm activity in Venus's magnetotail. Annales Geophysicae, 2009, 27, 2321-2330.	1.6	18
100	Studying the Lunar Ionosphere with SELENE Radio Science Experiment. Space Science Reviews, 2010, 154, 305-316.	8.1	18
101	Proton entry into the nearâ€lunar plasma wake for magnetic field aligned flow. Geophysical Research Letters, 2013, 40, 2913-2917.	4.0	18
102	CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport. Space Weather, 2021, 19, e2020SW002654.	3.7	18
103	The extension of ionospheric holes into the tail of Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 6940-6953.	2.4	17
104	DePhine – The Deimos and Phobos Interior Explorer. Advances in Space Research, 2018, 62, 2220-2238.	2.6	17
105	A largeâ€scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation. Geophysical Research Letters, 2013, 40, 1273-1278.	4.0	16
106	Magnetic Structure and Propagation of Two Interacting CMEs From the Sun to Saturn. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	16
107	Directionality and variability of energetic neutral hydrogen fluxes observed by Mars Express. Journal of Geophysical Research: Space Physics, 2013, 118, 7635-7642.	2.4	15
108	Imaging the South Pole–Aitken basin in backscattered neutral hydrogen atoms. Planetary and Space Science, 2015, 115, 57-63.	1.7	15

#	Article	IF	CITATIONS
109	Spontaneous hot flow anomalies at Mars and Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 9910-9923.	2.4	15
110	Statistical properties of planetary heavyâ€ion precipitations toward the Martian ionosphere obtained from Mars Express. Journal of Geophysical Research: Space Physics, 2013, 118, 5348-5357.	2.4	14
111	Periodic variations of oxygen EUV dayglow in the upper atmosphere of Venus: Hisaki/EXCEED observations. Journal of Geophysical Research E: Planets, 2015, 120, 2037-2052.	3.6	14
112	The impact of a slow interplanetary coronal mass ejection on Venus. Journal of Geophysical Research: Space Physics, 2015, 120, 3489-3502.	2.4	14
113	The September 2017 SEP Event in Context With the Current Solar Cycle: Mars Express ASPERAâ€3/IMA and MAVEN/SEP Observations. Geophysical Research Letters, 2018, 45, 7306-7311.	4.0	14
114	Proton Temperature Anisotropies in the Plasma Environment of Venus. Journal of Geophysical Research: Space Physics, 2019, 124, 3312-3330.	2.4	14
115	In situ observations of ions and magnetic field around Phobos: the mass spectrum analyzer (MSA) for the Martian Moons eXploration (MMX) mission. Earth, Planets and Space, 2021, 73, .	2.5	14
116	Observations of the Martian Subsolar ENA Jet Oscillations. Space Science Reviews, 2007, 126, 299-313.	8.1	13
117	Is the flowâ€aligned component of IMF really able to impact the magnetic field structure of Venusian magnetotail?. Journal of Geophysical Research: Space Physics, 2016, 121, 10,978.	2.4	13
118	Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations. Icarus, 2016, 271, 120-130.	2.5	13
119	Precipitation of Hydrogen Energetic Neutral Atoms at the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8730-8748.	2.4	13
120	Solar cycle variation of ion escape from Mars. Icarus, 2023, 393, 114610.	2.5	13
121	The possibility of studying the lunar ionosphere with the SELENE radio science experiment. Earth, Planets and Space, 2008, 60, 387-390.	2.5	12
122	Scattering characteristics and imaging of energetic neutral atoms from the Moon in the terrestrial magnetosheath. Journal of Geophysical Research: Space Physics, 2016, 121, 432-445.	2.4	12
123	Energisation of O+ and O+ 2 Ions at Mars: An Analysis of a 3-D Quasi-Neutral Hybrid Model Simulation. Space Science Reviews, 2007, 126, 39-62.	8.1	11
124	Solar zenith angleâ€dependent asymmetries in Venusian bow shock location revealed by Venus Express. Journal of Geophysical Research: Space Physics, 2015, 120, 4446-4451.	2.4	11
125	Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 2016, 121, 190-204.	2.4	11
126	Statistical features of the global polarity reversal of the Venusian induced magnetosphere in response to the polarity change in interplanetary magnetic field. Journal of Geophysical Research: Space Physics, 2016, 121, 3951-3962.	2.4	11

#	Article	IF	CITATIONS
127	Morphology of the magnetic field near Mars and the role of the magnetic crustal anomalies: Dayside region. Planetary and Space Science, 2008, 56, 852-855.	1.7	10
128	Advanced method to derive the IMF direction near Mars from cycloidal proton distributions. Planetary and Space Science, 2008, 56, 1145-1154.	1.7	10
129	Low-energy energetic neutral atom imaging of Io plasma and neutral tori. Planetary and Space Science, 2015, 108, 41-53.	1.7	10
130	On the in-situ detectability of Europa's water vapour plumes from a flyby mission. Icarus, 2017, 289, 270-280.	2.5	10
131	Energetic neutral atom occultation: New remote sensing technique to study the lunar exosphere. Journal of Geophysical Research, 2008, 113, .	3.3	9
132	Venusian bow shock as seen by the ASPERAâ€4 ion instrument on Venus Express. Journal of Geophysical Research, 2010, 115, .	3.3	9
133	Dualâ€spacecraft radio occultation measurement of the electron density near the lunar surface by the SELENE mission. Journal of Geophysical Research, 2012, 117, .	3.3	9
134	Influence of Martian crustal magnetic anomalies on the emission of energetic neutral hydrogen atoms. Journal of Geophysical Research: Space Physics, 2014, 119, 8600-8609.	2.4	9
135	Transport of solar wind plasma onto the lunar nightside surface. Geophysical Research Letters, 2016, 43, 10,586.	4.0	9
136	The Response of the Venusian Plasma Environment to the Passage of an ICME: Hybrid Simulation Results and Venus Express Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3580-3601.	2.4	8
137	Energetic neutral atom imaging mass spectroscopy of the Moon and Mercury environments. Advances in Space Research, 2006, 37, 38-44.	2.6	7
138	Solar wind scattering from the surface of Mercury: Lessons from the Moon. Icarus, 2017, 296, 39-48.	2.5	7
139	Ablation of Venusian oxygen ions by unshocked solar wind. Science Bulletin, 2017, 62, 1669-1672.	9.0	7
140	Energy Spectral Properties of Hydrogen Energetic Neutral Atoms Emitted From the Dayside Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 4104-4113.	2.4	7
141	Measurement of plasma channels in the Venus wake. Icarus, 2019, 321, 1026-1037.	2.5	7
142	Foreshock Cavities at Venus and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028023.	2.4	7
143	EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations. Earth and Planetary Physics, 2020, 4, 1-9.	1.1	7
144	Ion acceleration by multiple reflections at Martian bow shock. Earth, Planets and Space, 2012, 64, 61-71.	2.5	6

#	Article	IF	CITATIONS
145	Emission of energetic neutral atoms from water ice under Ganymede surface-like conditions. Icarus, 2016, 269, 91-97.	2.5	6
146	First Observation of Transport of Solar Wind Protons Scattered From Magnetic Anomalies Into the Near Lunar Wake: Observations by SARA/Chandrayaanâ€1. Geophysical Research Letters, 2018, 45, 8826-8833.	4.0	6
147	Global Venusâ€Solar Wind Coupling and Oxygen Ion Escape. Geophysical Research Letters, 2021, 48, e2020GL091213.	4.0	6
148	An Empirical Model of Energetic Neutral Atom Imaging of the Heliosphere and Its Implications for Future Heliospheric Missions at Great Heliocentric Distances. Astrophysical Journal, 2019, 886, 70.	4.5	6
149	In Situ Observations of the Ion Diffusion Region in the Venusian Magnetotail. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	6
150	Proton Temperature Anisotropies in the Venus Plasma Environment During Solar Minimum and Maximum. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	6
151	Callisto's Atmosphere and Its Space Environment: Prospects for the Particle Environment Package on Board JUICE. Earth and Space Science, 2022, 9, .	2.6	6
152	Variations of the magnetic field near Mars caused by magnetic crustal anomalies. Planetary and Space Science, 2008, 56, 856-860.	1.7	5
153	Corrigendum to "Substorm activity in Venus's magnetotail" published in Ann. Geophys., 27, 2321–2330, doi:10.5194/angeo-27-2321-2009, 2009. Annales Geophysicae, 2010, 28, 1877-1878.	1.6	5
154	Solar system planets observed with Suzaku. Advances in Space Research, 2011, 47, 411-418.	2.6	5
155	X-Ray Observation of Mars at Solar Minimum with Suzaku. Publication of the Astronomical Society of Japan, 2011, 63, S705-S712.	2.5	5
156	SELMA mission: How do airless bodies interact with space environment? The Moon as an accessible laboratory. Planetary and Space Science, 2018, 156, 23-40.	1.7	5
157	Solar windâ€driven thermospheric winds over the Venus North Polar region. Geophysical Research Letters, 2014, 41, 4413-4419.	4.0	4
158	Dust environment of an airless object: A phase space study with kinetic models. Planetary and Space Science, 2016, 120, 56-69.	1.7	4
159	A Statistical Study of Ionospheric Boundary Wave Formation at Venus. Journal of Geophysical Research: Space Physics, 2018, 123, 7668-7685.	2.4	4
160	Heavy Ion Flows in the Upper Ionosphere of the Venusian North Pole. Journal of Geophysical Research: Space Physics, 2019, 124, 4597-4607.	2.4	4
161	Does Phobos reflect solar wind protons? Mars Express special flyby operations with and without the presence of Phobos. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006969.	3.6	4
162	Simulations of Energetic Neutral Atom Sputtering From Ganymede in Preparation for the JUICE Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4

#	Article	IF	CITATIONS
163	Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby. Annales Geophysicae, 2021, 39, 811-831.	1.6	3
164	Reply to Comment on "An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions― Geophysical Research Letters, 2021, 48, e2021GL095240.	4.0	3
165	New suprathermal proton population around the Moon: Observation by SARA on Chandrayaanâ€1. Geophysical Research Letters, 2017, 44, 4540-4548.	4.0	2
166	Doubleâ€Peak Structures of Martian Nightside Total Electron Content in Strong Crustal Magnetic Cusp Regions. Geophysical Research Letters, 2021, 48, e2021GL092662.	4.0	2
167	Suzaku observations of charge exchange emission from solar system objects. Astronomische Nachrichten, 2012, 333, 319-323.	1.2	1
168	Corotation Plasma Environment Model: An Empirical Probability Model of the Jovian Magnetosphere. IEEE Transactions on Plasma Science, 2018, 46, 2126-2145.	1.3	1
169	Observations of the Martian Subsolar ENA Jet Oscillations. , 2007, , 299-313.		1
170	Investigation of the Influence of Magnetic Anomalies on Ion Distributions at Mars. , 2007, , 355-372.		0
171	Identification of Signal and Noise Components in Spacecraft Neutral Particle Data Using a Bi-Level Mixture Model. , 2017, , .		0
172	Prospects for Modeling and Forecasting SEP Events with ENLIL and SEPMOD. Proceedings of the International Astronomical Union, 2017, 13, 263-267.	0.0	0
173	Clobal Response of Martian Plasma Environment to an Interplanetary Structure: From ENA and Plasma Observations at Mars. , 2007, , 315-332.		0
174	Energisation of O+ and O 2 + Ions at Mars: An Analysis of A 3-D Quasi-Neutral Hybrid Model Simulation. , 2007, , 39-62.		0
175	IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express. , 2007, , 239-266.		0
176	Studying the Lunar Ionosphere with SELENE Radio Science Experiment. , 2010, , 305-316.		0
177	Exospheres and Energetic Neutral Atoms of Mars, Venus and Titan. Space Sciences Series of ISSI, 2011, , 213-266.	0.0	0
178	Application of Discovery Science to Solar-Terrestrial Physics. Lecture Notes in Computer Science, 1998, , 451-452.	1.3	0