Päivi Mäki-Arvela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5772590/publications.pdf Version: 2024-02-01

ΡΔαη ΜΔαι-Δρνειλ

#	Article	IF	CITATIONS
1	One-pot amination of aldehydes and ketones over heterogeneous catalysts for production of secondary amines. Catalysis Reviews - Science and Engineering, 2023, 65, 501-568.	12.9	10
2	Transformations of citral over bifunctional Ru-H-Y-80 extrudates in a continuous reactor. Chemical Engineering Journal, 2022, 429, 132190.	12.7	7
3	CuZSM-5@HMS composite as an efficient micro-mesoporous catalyst for conversion of sugars into levulinic acid. Catalysis Today, 2022, 390-391, 146-161.	4.4	8
4	Synthesis of Florol via Prins cyclization over heterogeneous catalysts. Journal of Catalysis, 2022, 405, 288-302.	6.2	3
5	Citral-to-Menthol Transformations in a Continuous Reactor over Ni/Mesoporous Aluminosilicate Extrudates Containing a Sepiolite Clay Binder. Organic Process Research and Development, 2022, 26, 387-403.	2.7	11
6	Diffusion measurements of hydrocarbons in H-MCM-41 extrudates with pulsed-field gradient nuclear magnetic resonance spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 8269-8278.	2.8	3
7	Continuous synthesis of menthol from citronellal and citral over Ni-beta-zeolite-sepiolite composite catalyst. Applied Catalysis A: General, 2022, 636, 118586.	4.3	7
8	Hierarchical Beta Zeolites As Catalysts in α-Pinene Oxide Isomerization. ACS Sustainable Chemistry and Engineering, 2022, 10, 6642-6656.	6.7	12
9	Bifunctional Pt–Re Catalysts in Hydrodeoxygenation of Isoeugenol as a Model Compound for Renewable Jet Fuel Production. ACS Engineering Au, 2022, 2, 436-449.	5.1	7
10	Catalytic conversion of glucose to methyl levulinate over metal-modified Beta zeolites. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 1971-1986.	1.7	2
11	Glucose transformations over a mechanical mixture of ZnO and Ru/C catalysts: Product distribution, thermodynamics and kinetics. Chemical Engineering Journal, 2021, 405, 126945.	12.7	10
12	Catalytic oxidative transformation of betulin to its valuable oxo-derivatives over gold supported catalysts: Effect of support nature. Catalysis Today, 2021, 367, 95-110.	4.4	8
13	Catalytic Hydrogenation/Hydrogenolysis of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran. ChemSusChem, 2021, 14, 150-168.	6.8	32
14	Catalytic transformations of citral in a continuous flow over bifunctional Ru-MCM-41 extrudates. Catalysis Science and Technology, 2021, 11, 2873-2884.	4.1	10
15	Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation. Nanomaterials, 2021, 11, 469.	4.1	3
16	Mono―and Bimetallic Niâ^'Co Catalysts in Dry Reforming of Methane. ChemistrySelect, 2021, 6, 3424-3434.	1.5	19
17	Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural over Supported Bimetallic Iridium-Based Catalysts. Journal of Physical Chemistry C, 2021, 125, 9657-9678.	3.1	10
18	Catalytic activity of hierarchical beta zeolites in the Prins cyclization of (â^')-isopulegol with acetone. Applied Catalysis A: General, 2021, 618, 118131.	4.3	9

#	Article	IF	CITATIONS
19	Effect of metal particle shape on hydrogen assisted reactions. Applied Catalysis A: General, 2021, 618, 118140.	4.3	9
20	Hydroconversion of fatty acids and vegetable oils for production of jet fuels. Fuel, 2021, 306, 121673.	6.4	30
21	Hydrodeoxygenation of Isoeugenol over Carbon-Supported Pt and Pt–Re Catalysts for Production of Renewable Jet Fuel. Energy & Fuels, 2021, 35, 17755-17768.	5.1	13
22	The physicochemical and catalytic properties of clay extrudates in cyclization of citronellal. Applied Catalysis A: General, 2021, , 118426.	4.3	11
23	Metal catalysts supported on biochars: Part I synthesis and characterization. Applied Catalysis B: Environmental, 2020, 268, 118423.	20.2	43
24	Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars: Part II: Catalytic behaviour. Applied Catalysis B: Environmental, 2020, 268, 118425.	20.2	61
25	Heterogeneous Catalytic Synthesis of Methyl Lactate and Lactic Acid from Sugars and Their Derivatives. ChemSusChem, 2020, 13, 4833-4855.	6.8	21
26	Cascade transformations of (±)-citronellal to menthol over extruded Ru-MCM-41 catalysts in a continuous reactor. Catalysis Science and Technology, 2020, 10, 8108-8119.	4.1	12
27	Understanding the formation of phenolic monomers during fractionation of birch wood under supercritical ethanol over iron based catalysts. Journal of the Energy Institute, 2020, 93, 2055-2062.	5.3	6
28	Hydrocracking of hexadecane to jet fuel components over hierarchical Ru-modified faujasite zeolite. Fuel, 2020, 278, 118193.	6.4	20
29	Stereoselectivity Inversion by Water Addition in the â^'SO 3 Hâ€catalyzed Tandem Prinsâ€Ritter Reaction for Synthesis of 4â€amidotetrahydropyran Derivatives. ChemCatChem, 2020, 12, 2605-2609.	3.7	11
30	Catalytic synthesis of bioactive 2H-chromene alcohols from (â^')-isopulegol and acetone on sulfonated clays. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 627-644.	1.7	9
31	Synthesis and physico-chemical characterization of Beta zeolite catalysts: Evaluation of catalytic properties in Prins cyclization of (â^')-isopulegol. Microporous and Mesoporous Materials, 2020, 302, 110236.	4.4	5
32	A Sustainable Bio-Jet Fuel: An Alternative Energy Source for Aviation Sector. Clean Energy Production Technologies, 2020, , 465-496.	0.5	0
33	Hydrodeoxygenation of Isoeugenol over Ni- and Co-Supported Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 14545-14560.	6.7	33
34	Biocrude production through hydroâ€ŀiquefaction of wood biomass in supercritical ethanol using iron silica and iron beta zeolite catalysts. Journal of Chemical Technology and Biotechnology, 2019, 94, 3736-3744.	3.2	17
35	Molybdenum Nitrides, Carbides and Phosphides as Highly Efficient Catalysts for the (hydro)Deoxygenation Reaction. ChemistrySelect, 2019, 4, 8453-8459.	1.5	20
36	Effect of Binders on the Physicochemical and Catalytic Properties of Extrudate-Shaped Beta Zeolite Catalysts for Cyclization of Citronellal. Organic Process Research and Development, 2019, 23, 2456-2463.	2.7	28

#	Article	IF	CITATIONS
37	Prins cyclisation of (–)-isopulegol with benzaldehyde over ZSM-5 based micro-mesoporous catalysts for production of pharmaceuticals. Chinese Journal of Catalysis, 2019, 40, 1713-1720.	14.0	10
38	Immobilized chiral rhodium nanoparticles stabilized by chiral P-ligands as efficient catalysts for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Molecular Catalysis, 2019, 477, 110551.	2.0	0
39	Synthesis and Physicochemical Characterization of Shaped Catalysts of β and Y Zeolites for Cyclization of Citronellal. Industrial & Engineering Chemistry Research, 2019, 58, 18084-18096.	3.7	31
40	Prins cyclization of (-)-isopulegol with benzaldehyde for production of chromenols over organosulfonic clays. Molecular Catalysis, 2019, 478, 110569.	2.0	7
41	Hexadecane hydrocracking for production of jet fuels from renewable diesel over proton and metal modified H-Beta zeolites. Molecular Catalysis, 2019, 476, 110515.	2.0	17
42	SO ₃ H-Containing Functional Carbon Materials: Synthesis, Structure, and Acid Catalysis. Chemical Reviews, 2019, 119, 11576-11630.	47.7	157
43	Kinetic and Thermodynamic Analysis of Guaiacol Hydrodeoxygenation. Catalysis Letters, 2019, 149, 2453-2467.	2.6	32
44	Oxidation of a wood extractive betulin to biologically active oxo-derivatives using supported gold catalysts. Green Chemistry, 2019, 21, 3370-3382.	9.0	11
45	Hydrodeoxygenation of isoeugenol over Ni-SBA-15: Kinetics and modelling. Applied Catalysis A: General, 2019, 580, 1-10.	4.3	34
46	Aldol Condensation of Cyclopentanone with Valeraldehyde Over Metal Oxides. Catalysis Letters, 2019, 149, 1383-1395.	2.6	14
47	Synthesis of menthol from citronellal over supported Ru- and Pt-catalysts in continuous flow. Reaction Chemistry and Engineering, 2019, 4, 2156-2169.	3.7	18
48	Renewable N-doped active carbons as efficient catalysts for direct synthesis of cyclic carbonates from epoxides and CO2. Applied Catalysis B: Environmental, 2019, 241, 41-51.	20.2	114
49	Selective hydrodeoxygenation of biomass derived 5-hydroxymethylfurfural over silica supported iridium catalysts. Applied Catalysis B: Environmental, 2019, 241, 270-283.	20.2	64
50	Hydrodeoxygenation of phenolic model compounds over zirconia supported Ir and Ni-catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 737-759.	1.7	30
51	Isomerization of α-Pinene Oxide: Solvent Effects, Kinetics and Thermodynamics. Catalysis Letters, 2019, 149, 203-214.	2.6	14
52	Efficient C–C coupling of bio-based furanics and carbonyl compounds to liquid hydrocarbon precursors over lignosulfonate derived acidic carbocatalysts. Catalysis Science and Technology, 2018, 8, 2449-2459.	4.1	33
53	Fluidized-Bed Isobutane Dehydrogenation over Alumina-Supported Ga ₂ O ₃ and Ga ₂ O ₃ –Cr ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 927-938.	3.7	19
54	Aqueous-phase reforming of alcohols with three carbon atoms on carbon-supported Pt. Catalysis Today, 2018, 301, 78-89.	4.4	44

#	Article	IF	CITATIONS
55	Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate. Catalysis Today, 2018, 306, 128-137.	4.4	27
56	Catalytic dehydrogenation of ethanol into acetaldehyde and isobutanol using mono- and multicomponent copper catalysts. Comptes Rendus Chimie, 2018, 21, 194-209.	0.5	39
57	Lignosulfonate-based macro/mesoporous solid protonic acids for acetalization of glycerol to bio-additives. Applied Catalysis B: Environmental, 2018, 220, 314-323.	20.2	76
58	Synthesis of Co/Al2O3 Catalysts and Their Application in Heptane Steam Reforming. Catalysis Letters, 2018, 148, 512-522.	2.6	1
59	Catalytic Hydroisomerization of Long-Chain Hydrocarbons for the Production of Fuels. Catalysts, 2018, 8, 534.	3.5	51
60	Hydrodeoxygenation of Isoeugenol over Alumina-Supported Ir, Pt, and Re Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16205-16218.	6.7	31
61	Catalytic Conversion of Hexanol to 2-Butyl-octanol Through the Guerbet Reaction. Topics in Catalysis, 2018, 61, 1888-1900.	2.8	3
62	Production of Cycloalkanes in Hydrodeoxygenation of Isoeugenol Over Pt―and Irâ€Modified Bifunctional Catalysts. European Journal of Inorganic Chemistry, 2018, 2018, 2841-2854.	2.0	28
63	Hydrodeoxygenation of vanillin over carbon supported metal catalysts. Applied Catalysis A: General, 2018, 561, 137-149.	4.3	73
64	Vanillin Hydrodeoxygenation: Kinetic Modelling and Solvent Effect. Catalysis Letters, 2018, 148, 2856-2868.	2.6	16
65	Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, pH, Temperature and Concentration. Molecules, 2018, 23, 946.	3.8	45
66	Melamine-derived graphitic carbon nitride as a new effective metal-free catalyst for Knoevenagel condensation of benzaldehyde with ethylcyanoacetate. Catalysis Science and Technology, 2018, 8, 2928-2937.	4.1	91
67	Isomerization of α-pinene oxide over ZSM-5 based micro-mesoporous materials. Applied Catalysis A: General, 2018, 560, 236-247.	4.3	33
68	Kinetics and Modelling of Levulinic Acid Esterification in Batch and Continuous Reactors. Topics in Catalysis, 2018, 61, 1856-1865.	2.8	18
69	Two-step synthesis of monoterpenoid dioxinols exhibiting analgesic activity from isopulegol and benzaldehyde over heterogeneous catalysts. Catalysis Today, 2017, 279, 56-62.	4.4	10
70	Hydrodeoxygenation of stearic acid and tall oil fatty acids over Ni-alumina catalysts: Influence of reaction parameters and kinetic modelling. Chemical Engineering Journal, 2017, 316, 401-409.	12.7	78
71	Sulfur-free Ni catalyst for production of green diesel by hydrodeoxygenation. Journal of Catalysis, 2017, 347, 205-221.	6.2	89
72	Solvent-free "green―amidation of stearic acid for synthesis of biologically active alkylamides over iron supported heterogeneous catalysts. Applied Catalysis A: General, 2017, 542, 350-358.	4.3	9

#	Article	IF	CITATIONS
73	Direct Amination of Dodecanol over Noble and Transition Metal Supported Silica Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 12878-12887.	3.7	14
74	Aqueous Extraction of the Sulfated Polysaccharide Ulvan from the Green Alga Ulva rigida—Kinetics and Modeling. Bioenergy Research, 2017, 10, 915-928.	3.9	13
75	Kinetics in the thermal and catalytic amidation of C18 fatty acids with ethanolamine forÂthe production of pharmaceuticals. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 15-29.	1.7	7
76	Stearic acid hydrodeoxygenation over Pd nanoparticles embedded in mesoporous hypercrosslinked polystyrene. Journal of Industrial and Engineering Chemistry, 2017, 46, 426-435.	5.8	35
77	Direct hydrodeoxygenation of algal lipids extracted from <i>Chlorella</i> alga. Journal of Chemical Technology and Biotechnology, 2017, 92, 741-748.	3.2	17
78	Hydrodeoxygenation of Lignin-Derived Phenols: From Fundamental Studies towards Industrial Applications. Catalysts, 2017, 7, 265.	3.5	85
79	Extraction of Lipids from <i>Chlorella</i> Alga by Supercritical Hexane and Demonstration of Their Subsequent Catalytic Hydrodeoxygenation. Industrial & Engineering Chemistry Research, 2016, 55, 10626-10634.	3.7	9
80	Thermal and Catalytic Amidation of Stearic Acid with Ethanolamine for Production of Pharmaceuticals and Surfactants. Topics in Catalysis, 2016, 59, 1151-1164.	2.8	7
81	Unprecedented Selective Heterogeneously Catalysed "Green―Oxidation of Betulin to Biologically Active Compounds using Synthetic Air and Supported Ru Catalysts. ChemistrySelect, 2016, 1, 3866-3869.	1.5	6
82	Selective esterification of fatty acids with glycerol to monoglycerides over –SO3H functionalized carbon catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 121-138.	1.7	27
83	Sulfonated carbon as a new, reusable heterogeneous catalyst for one-pot synthesis of acetone soluble cellulose acetate. RSC Advances, 2016, 6, 8829-8837.	3.6	23
84	Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Research, 2016, 13, 141-147.	4.6	59
85	Second generation bioethanol from Eucalyptus globulus Labill and Nothofagus pumilio: Ionic liquid pretreatment boosts the yields. Industrial Crops and Products, 2016, 80, 148-155.	5.2	28
86	Identification and efficient extraction method of phlorotannins from the brown seaweed Macrocystis pyrifera using an orthogonal experimental design. Algal Research, 2016, 16, 201-208.	4.6	92
87	Mathematical modeling of starch oxidation by hydrogen peroxide in the presence of an iron catalyst complex. Chemical Engineering Science, 2016, 146, 19-25.	3.8	8
88	Acid hydrolysis of <i>O</i> -acetyl-galactoglucomannan in a continuous tube reactor: a new approach to sugar monomer production. Holzforschung, 2016, 70, 187-194.	1.9	19
89	Sustainable synthesis of N and P co-doped porous amorphous carbon using oil seed processing wastes. Materials Letters, 2016, 173, 145-148.	2.6	19
90	Comparative study of sulfur-free nickel and palladium catalysts in hydrodeoxygenation of different fatty acid feedstocks for production of biofuels. Catalysis Science and Technology, 2016, 6, 1476-1487.	4.1	58

#	Article	IF	CITATIONS
91	Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst. Fuel, 2016, 166, 1-11.	6.4	81
92	Acid hydrolysis of xylan. Catalysis Today, 2016, 259, 376-380.	4.4	57
93	Pharmaceuticals and Surfactants from Algaâ€Derived Feedstock: Amidation of Fatty Acids and Their Derivatives with Amino Alcohols. ChemSusChem, 2015, 8, 2670-2680.	6.8	8
94	The transformation of silicon species contained in used oils under industrially relevant alkali treatment conditions. Journal of Chemical Technology and Biotechnology, 2015, 90, 1991-1998.	3.2	0
95	Properties of adsorbents used for bleaching of vegetable oils and animal fats. Journal of Chemical Technology and Biotechnology, 2015, 90, 1579-1591.	3.2	18
96	Algal products beyond lipids: Comprehensive characterization of different products in direct saponification of green alga Chlorella sp Algal Research, 2015, 11, 156-164.	4.6	26
97	Biomass to value added chemicals: Isomerisation of β-pinene oxide over supported ionic liquid catalysts (SILCAs) containing Lewis acids. Catalysis Today, 2015, 257, 318-321.	4.4	17
98	Shape selectivity and acidity effects in glycerol acetylation with acetic anhydride: Selective synthesis of triacetin over Y-zeolite and sulfonated mesoporous carbons. Journal of Catalysis, 2015, 329, 237-247.	6.2	66
99	Carbon supported catalysts in low temperature steam reforming of ethanol: study of catalyst performance. RSC Advances, 2015, 5, 49487-49492.	3.6	9
100	Extraction of Spent Bleaching Earth inÂtheÂProduction of Renewable Diesel. Chemical Engineering and Technology, 2015, 38, 769-776.	1.5	19
101	A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel, 2015, 155, 144-154.	6.4	84
102	Towards carbon efficient biorefining: Multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion. Applied Catalysis B: Environmental, 2015, 176-177, 20-35.	20.2	137
103	Prins cyclization: Synthesis of compounds with tetrahydropyran moiety over heterogeneous catalysts. Journal of Molecular Catalysis A, 2015, 410, 260-270.	4.8	40
104	On the Interaction of Metal Nanoparticles with Supports. Topics in Catalysis, 2015, 58, 1127-1135.	2.8	5
105	Isomerization of verbenol oxide to a diol with para-menthane structure exhibiting anti-Parkinson activity. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 299-314.	1.7	3
106	Heterogeneous catalysis for transformation of biomass derived compounds beyond fuels: Synthesis of monoterpenoid dioxinols with analgesic activity. Journal of Molecular Catalysis A, 2015, 397, 48-55.	4.8	16
107	Chemoselective hydrogenation of citral by Pt and Pt-Sn catalysts supported on TiO2 nanoparticles and nanowires. Catalysis Today, 2015, 241, 170-178.	4.4	23
108	H- and Fe-modified zeolite beta catalysts for preparation of trans-carveol from α-pinene oxide. Catalysis Today, 2015, 241, 237-245.	4.4	40

#	Article	IF	CITATIONS
109	The base-catalyzed transformation of tetramethyldisiloxane: influence of reaction media. Journal of Chemical Technology and Biotechnology, 2015, 90, 34-43.	3.2	3
110	Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina. Renewable Energy, 2015, 74, 369-378.	8.9	48
111	Enantioselective Hydrogenation of Ethyl Benzoylformate, from Mechanism and Kinetics to Continuous Reactor Technology. Topics in Catalysis, 2014, 57, 1576-1581.	2.8	1
112	Isomerisation of α-Pinene Oxide to Campholenic Aldehyde Over Supported Ionic Liquid Catalysts (SILCAs). Topics in Catalysis, 2014, 57, 1533-1538.	2.8	15
113	Kinetics upon Isomerization of α,β-Pinene Oxides over Supported Ionic Liquid Catalysts Containing Lewis Acids. Industrial & Engineering Chemistry Research, 2014, 53, 20107-20115.	3.7	11
114	The effect of switchable ionic liquid (SIL) treatment on the composition and crystallinity of birch chips (Betula pendula) using a novel alkanol amine-organic superbase-derived SIL. Green Processing and Synthesis, 2014, 3, 147-154.	3.4	3
115	Kinetic modeling of hemicellulose hydrolysis in the presence of homogeneous and heterogeneous catalysts. AICHE Journal, 2014, 60, 1066-1077.	3.6	37
116	Hemicellulose hydrolysis and hydrolytic hydrogenation over proton- and metal modified beta zeolites. Microporous and Mesoporous Materials, 2014, 189, 189-199.	4.4	37
117	Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities. Chemical Reviews, 2014, 114, 1909-1971.	47.7	367
118	Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic aldehyde. Applied Catalysis A: General, 2014, 470, 162-176.	4.3	55
119	Towards optimal selective fractionation for Nordic woody biomass using novel amine–organic superbase derived switchable ionic liquids (SILs). Biomass and Bioenergy, 2014, 70, 373-381.	5.7	19
120	Kinetics and catalyst deactivation in the enantioselective hydrogenation of ethyl benzoylformate over Pt/Al ₂ O ₃ . Catalysis Science and Technology, 2014, 4, 170-178.	4.1	12
121	Switchable Ionic Liquids as Delignification Solvents for Lignocellulosic Materials. ChemSusChem, 2014, 7, 1170-1176.	6.8	72
122	Kinetic Modeling of Ethyl Benzoylformate Enantioselective Hydrogenation over Pt/Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2014, 53, 11945-11953.	3.7	2
123	Hemicellulose Hydrolysis in the Presence of Heterogeneous Catalysts. Topics in Catalysis, 2014, 57, 1470-1475.	2.8	4
124	Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. Journal of Molecular Catalysis A, 2014, 388-389, 167-176.	4.8	144
125	Comparative study of the extraction methods for recovery of carotenoids from algae: extraction kinetics and effect of different extraction parameters. Journal of Chemical Technology and Biotechnology, 2014, 89, 1607-1626.	3.2	56
126	Etherification of 5-Hydroxymethylfurfural to a Biodiesel Component Over Ionic Liquid Modified Zeolites. Topics in Catalysis, 2013, 56, 765-769.	2.8	22

#	Article	IF	CITATIONS
127	Imidazoliumâ€Based Poly(ionic liquid)s as New Alternatives for CO ₂ Capture. ChemSusChem, 2013, 6, 1500-1509.	6.8	75
128	Acid hydrolysis of O-acetyl-galactoglucomannan. Catalysis Science and Technology, 2013, 3, 116-122.	4.1	22
129	Solvent Effects in the Enantioselective Hydrogenation of Ethyl Benzoylformate. Catalysis Letters, 2013, 143, 1051-1060.	2.6	15
130	15th Nordic Symposium on Catalysis, Mariehamn, Åland, June 16–18, 2012. Topics in Catalysis, 2013, 56, 511-511.	2.8	0
131	Isomerization of α-Pinene Oxide Over Iron-Modified Zeolites. Topics in Catalysis, 2013, 56, 696-713.	2.8	33
132	Deactivation in Continuous Deoxygenation of C18-Fatty Feedstock over Pd/Sibunit. Topics in Catalysis, 2013, 56, 714-724.	2.8	18
133	Effect of catalyst synthesis parameters on the metal particle size. Applied Catalysis A: General, 2013, 451, 251-281.	4.3	106
134	Technology for rerefining used lube oils applied in Europe: a review. Journal of Chemical Technology and Biotechnology, 2013, 88, 1780-1793.	3.2	44
135	Regioselective Hydrogenation of 1,2-Indanedione Over Heterogeneous Pd and Pt Catalysts. Catalysis Letters, 2013, 143, 142-149.	2.6	5
136	The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO2, ethanol and butylene oxide. Catalysis Today, 2013, 210, 47-54.	4.4	35
137	Opening of monoterpene epoxide to a potent anti-Parkinson compound of para-menthane structure over heterogeneous catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 449-458.	1.7	14
138	Selective Preparation of trans-Carveol over Ceria Supported Mesoporous Materials MCM-41 and SBA-15. Materials, 2013, 6, 2103-2118.	2.9	27
139	The Challenge of Efficient Synthesis of Biofuels from Lignocellulose for Future Renewable Transportation Fuels. International Journal of Chemical Engineering, 2012, 2012, 1-10.	2.4	16
140	Gold Catalysts for Selective Aerobic Oxidation of the Lignan Hydroxymatairesinol to Oxomatairesinol: Catalyst Deactivation and Regeneration. Catalysis Letters, 2012, 142, 1011-1019.	2.6	9
141	Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst. Catalysis Today, 2012, 196, 26-33.	4.4	35
142	Hydrogenation of geraniol using ruthenium–BINAP catalysts. Catalysis Science and Technology, 2012, 2, 1901.	4.1	2
143	Influence of Hydrogen in Catalytic Deoxygenation of Fatty Acids and Their Derivatives over Pd/C. Industrial & Engineering Chemistry Research, 2012, 51, 8922-8927.	3.7	105
144	Treating birch wood with a switchable 1,8-diazabicyclo-[5.4.0]-undec-7-ene-glycerol carbonate ionic liquid. Holzforschung, 2012, 66, 809-815.	1.9	27

#	Article	IF	CITATIONS
145	Hydrogenation of Citral Over Carbon Supported Iridium Catalysts. Catalysis Letters, 2012, 142, 690-697.	2.6	15
146	Synthesis and characterization of solid base mesoporous and microporous catalysts: Influence of the support, structure and type of base metal. Microporous and Mesoporous Materials, 2012, 152, 71-77.	4.4	44
147	Kinetics of lactose and rhamnose oxidation over supported metal catalysts. Physical Chemistry Chemical Physics, 2011, 13, 9268.	2.8	19
148	Switchable Ionic liquids (SILs) based on glycerol and acid gases. RSC Advances, 2011, 1, 452.	3.6	78
149	Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, AI-SBA-15, and AI2O3-supported Pt catalysts for cinnamaldehyde hydrogenation. Journal of Catalysis, 2011, 282, 228-236.	6.2	78
150	Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO2–MgO catalyst in the presence of butylene oxide as additive. Applied Catalysis A: General, 2011, 404, 39-39.	4.3	9
151	Synthesis of Sugars by Hydrolysis of Hemicelluloses- A Review. Chemical Reviews, 2011, 111, 5638-5666.	47.7	350
152	Selective Oxidation of <scp>D</scp> â€Galactose over Gold Catalysts. ChemCatChem, 2011, 3, 1789-1798.	3.7	27
153	Selective Hydrolysis of Arabinogalactan into Arabinose and Galactose Over Heterogeneous Catalysts. Catalysis Letters, 2011, 141, 408-412.	2.6	44
154	The Effect of Alkoxide Ionic Liquids on the Synthesis of Dimethyl Carbonate from CO2 and Methanol over ZrO2–MgO. Catalysis Letters, 2011, 141, 1254-1261.	2.6	49
155	Catalytic Deoxygenation of C18 Fatty Acids Over Mesoporous Pd/C Catalyst for Synthesis of Biofuels. Topics in Catalysis, 2011, 54, 460-466.	2.8	64
156	Kinetic modeling of lipaseâ€mediated oneâ€pot chemoâ€bio cascade synthesis of <i>R</i> â€1â€phenyl ethyl ace starting from acetophenone. Journal of Chemical Technology and Biotechnology, 2010, 85, 192-198.	tate 3.2	3
157	Dynamic Kinetic Resolution of <i>rac</i> â€2â€Hydroxyâ€1â€indanone by using a Heterogeneous Ru(OH) ₃ /Al ₂ O ₃ Racemization Catalyst and Lipase. ChemCatChem, 2010, 2, 1615-1621.	3.7	15
158	Catalytic Deoxygenation of Tall Oil Fatty Acids Over a Palladium-Mesoporous Carbon Catalyst: A New Source of Biofuels. Topics in Catalysis, 2010, 53, 1274-1277.	2.8	65
159	Acylation of (R,S)-1-phenylethanol with ethyl acetate over an immobilized enzyme. Research on Chemical Intermediates, 2010, 36, 245-252.	2.7	2
160	Mechanism of the chemo–bio catalyzed cascade synthesis of R-1-phenylethyl acetate over Pd/Al2O3, lipase, and Ru-catalysts. Research on Chemical Intermediates, 2010, 36, 193-210.	2.7	5
161	The effect of palladium dispersion and promoters on lactose oxidation kinetics. Research on Chemical Intermediates, 2010, 36, 423-442.	2.7	9
162	Kinetics and mass transfer in hydroformylation-bulk or film reaction?. Canadian Journal of Chemical Engineering, 2010, 88, n/a-n/a.	1.7	3

#	Article	IF	CITATIONS
163	Kinetics and modeling of (R,S)â€lâ€phenylethanol acylation over lipase. International Journal of Chemical Kinetics, 2010, 42, 629-639.	1.6	8
164	Deoxygenation of dodecanoic acid under inert atmosphere. Fuel, 2010, 89, 2033-2039.	6.4	93
165	Decarboxylation of fatty acids over Pd supported on mesoporous carbon. Catalysis Today, 2010, 150, 28-31.	4.4	117
166	Catalytic Deoxygenation of Stearic Acid and Palmitic Acid in Semibatch Mode. Catalysis Letters, 2009, 130, 48-51.	2.6	110
167	Lactose oxidation over palladium catalysts supported on active carbons and on carbon nanofibres. Research on Chemical Intermediates, 2009, 35, 155-174.	2.7	14
168	Deoxygenation of palmitic and stearic acid over supported Pd catalysts: Effect of metal dispersion. Applied Catalysis A: General, 2009, 355, 100-108.	4.3	209
169	Synthesis of Biodiesel via Deoxygenation of Stearic Acid over Supported Pd/C Catalyst. Catalysis Letters, 2008, 122, 247-251.	2.6	114
170	Utilization of cascade chemo-bio catalysis for the synthesis of R-1-phenylethyl acetate. Reaction Kinetics and Catalysis Letters, 2008, 94, 281-288.	0.6	6
171	Kinetic Modeling of Propene Hydroformylation with Rh/TPP and Rh/CHDPP Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 4317-4324.	3.7	21
172	Preparation of dimethoxyborane and analysis by Fourier transform infrared spectroscopy. Research on Chemical Intermediates, 2007, 33, 645-654.	2.7	3
173	Catalytic Deoxygenation of Fatty Acids and Their Derivatives. Energy & amp; Fuels, 2007, 21, 30-41.	5.1	315
174	Thermal and catalytic oligomerisation of fatty acids. Applied Catalysis A: General, 2007, 330, 1-11.	4.3	33
175	Multitubular reactor design as an advanced screening tool for three-phase catalytic reactions. Topics in Catalysis, 2007, 45, 223-227.	2.8	9
176	The influence of acidity of carbon nanofibre-supported palladium catalysts in the hydrogenolysis of hydroxymatairesinol. Catalysis Letters, 2007, 113, 141-146.	2.6	22
177	Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Industrial & Engineering Chemistry Research, 2006, 45, 5708-5715.	3.7	577
178	Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catalysis Today, 2005, 106, 197-200.	4.4	351
179	Hydrogenolysis of Hydroxymatairesinol Over Carbon-Supported Palladium Catalysts. Catalysis Letters, 2005, 103, 125-131.	2.6	35
180	Catalyst Deactivation in Diborane Decomposition. Catalysis Letters, 2005, 105, 191-202.	2.6	29

#	Article	IF	CITATIONS
181	Selectivity Enhancement by Catalyst Deactivation in Three-Phase Hydrogenation of Nerol. Industrial & Engineering Chemistry Research, 2005, 44, 9376-9383.	3.7	7
182	Support Effects in Nerol Hydrogenation over Pt/SiO2, Pt/H-Y and Pt/H-MCM-41 Catalysts. Catalysis Letters, 2004, 98, 173-179.	2.6	6
183	Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite. Journal of Molecular Catalysis A, 2004, 217, 145-154.	4.8	41
184	Ring opening of decalin over zeolitesI. Activity and selectivity of proton-form zeolites. Journal of Catalysis, 2004, 222, 65-79.	6.2	131
185	Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. Journal of Catalysis, 2004, 225, 155-169.	6.2	93
186	Advanced Kinetic Concepts and Experimental Methods for Catalytic Three-Phase Processes. Industrial & Engineering Chemistry Research, 2004, 43, 4540-4550.	3.7	21
187	Heterogeneous Catalytic Production of Conjugated Linoleic Acid. Organic Process Research and Development, 2004, 8, 341-352.	2.7	27
188	Modelling of catalyst deactivation in liquid phase reactions: citral hydrogenation on Ru/Al2O3. Reaction Kinetics and Catalysis Letters, 2003, 78, 251-257.	0.6	18
189	Isomerization of linoleic acid over supported metal catalysts. Applied Catalysis A: General, 2003, 245, 257-275.	4.3	63
190	Hydrosilylation of cinchonidine and 9-O-TMS-cinchonidine with triethoxysilane: application of 11-(triethoxysilyl)-10,11-dihydrocinchonidine as a chiral modifier in the enantioselective hydrogenation of 1-phenylpropane-1,2-dione. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2605-2612.	1.3	33
191	Parallel hydrogenation of 2,2-dimethylol-1-butanal and formaldehyde over supported NiCr and CuCr catalysts. Journal of Chemical Technology and Biotechnology, 2002, 77, 533-538.	3.2	1
192	Liquid phase hydrogenation of citral: suppression of side reactions. Applied Catalysis A: General, 2002, 237, 181-200.	4.3	78
193	Hydrogenation of Citral Over a Polymer Fibre Catalyst. Catalysis Letters, 2002, 84, 219-224.	2.6	31
194	Batchwise and continuous enantioselective hydrogenation of 1-phenyl-1,2-propanedione catalyzed by new Pt/SiO2 fibers. Applied Catalysis A: General, 2001, 216, 73-83.	4.3	33
195	Enantioselective Hydrogenation of 1-Phenyl-1,2-propanedione. Journal of Catalysis, 2001, 204, 281-291.	6.2	67
196	Ultrasonic Irradiation in Enantioselective Hydrogenation of 1-Phenyl-1,2-Propanedione. Reaction Kinetics and Catalysis Letters, 2001, 73, 3-11.	0.6	6
197	Modeling of the enantioselective hydrogenation of 1-phenyl-1,2-propanedione over Pt/Al2O3 catalyst. Catalysis Today, 2001, 66, 411-417.	4.4	27
198	Acid catalytic effects in the chlorination of propanoic acid. Journal of Chemical Technology and Biotechnology, 2000, 75, 89-97.	3.2	2

#	Article	IF	CITATIONS
199	The effect of oxygen and the reduction temperature of the Pt/Al2O3 catalyst in enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Catalysis Today, 2000, 60, 175-184.	4.4	34
200	Liquid-phase hydrogenation of citral over an immobile silica fibre catalyst. Applied Catalysis A: General, 2000, 196, 93-102.	4.3	42
201	Comparison of polyvinylbenzene and polyolefin supported sulphonic acid catalysts in the esterification of acetic acid. Applied Catalysis A: General, 1999, 184, 25-32.	4.3	64
202	Xylose hydrogenation: kinetic and NMR studies of the reaction mechanisms. Catalysis Today, 1999, 48, 73-81.	4.4	62
203	The role of acetyl chloride in the chlorination of acetic acid. Journal of Chemical Technology and Biotechnology, 1994, 61, 1-10.	3.2	5