Nicholas M Graziane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5772482/publications.pdf

Version: 2024-02-01

45 papers

1,641 citations

16 h-index 395702 33 g-index

51 all docs

51 docs citations

51 times ranked

2299 citing authors

#	Article	IF	CITATIONS
1	Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nature Neuroscience, 2010, 13, 327-332.	14.8	367
2	Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nature Neuroscience, 2013, 16, 1644-1651.	14.8	256
3	Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nature Neuroscience, 2016, 19, 915-925.	14.8	149
4	The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Molecular Psychiatry, 2011, 16, 1006-1023.	7.9	124
5	Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic Plasticity. Neuron, 2013, 77, 942-954.	8.1	105
6	Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Frontiers in Behavioral Neuroscience, 2020, 14, 582147.	2.0	103
7	Opioid and Psychostimulant Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. Trends in Pharmacological Sciences, 2018, 39, 276-294.	8.7	74
8	Silent synapses dictate cocaine memory destabilization and reconsolidation. Nature Neuroscience, 2020, 23, 32-46.	14.8	65
9	Poststress Block of Kappa Opioid Receptors Rescues Long-Term Potentiation of Inhibitory Synapses and Prevents Reinstatement of Cocaine Seeking. Biological Psychiatry, 2014, 76, 785-793.	1.3	57
10	Regulation of N-Methyl-D-Aspartate Receptors by Disrupted-in-Schizophrenia-1. Biological Psychiatry, 2014, 75, 414-424.	1.3	41
11	Constitutive activation of kappa opioid receptors at ventral tegmental area inhibitory synapses following acute stress. ELife, 2017, 6, .	6.0	36
12	Dopamine D4 Receptors Regulate GABAA Receptor Trafficking via an Actin/Cofilin/Myosin-dependent Mechanism. Journal of Biological Chemistry, 2009, 284, 8329-8336.	3.4	32
13	Ketamine Blocks Morphine-Induced Conditioned Place Preference and Anxiety-Like Behaviors in Mice. Frontiers in Behavioral Neuroscience, 2020, 14, 75.	2.0	28
14	A Focus on Reward Prediction and the Lateral Habenula: Functional Alterations and the Behavioral Outcomes Induced by Drugs of Abuse. Frontiers in Synaptic Neuroscience, 2018, 10, 12.	2.5	26
15	Gating reaction mechanism of neuronal NMDA receptors. Journal of Neurophysiology, 2012, 108, 3105-3115.	1.8	24
16	Anterior cingulate cortex is necessary for spontaneous opioid withdrawal and withdrawal-induced hyperalgesia in male mice. Neuropsychopharmacology, 2021, 46, 1990-1999.	5.4	21
17	DISC1 Protein Regulates Î ³ -Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons. Journal of Biological Chemistry, 2015, 290, 27680-27687.	3.4	19
18	Timing of Morphine Administration Differentially Alters Paraventricular Thalamic Neuron Activity. ENeuro, 2019, 6, ENEURO.0377-19.2019.	1.9	16

#	Article	IF	Citations
19	Morphine Differentially Alters the Synaptic and Intrinsic Properties of D1R- and D2R-Expressing Medium Spiny Neurons in the Nucleus Accumbens. Frontiers in Synaptic Neuroscience, 2019, 11, 35.	2.5	15
20	Neuronal mechanisms mediating pathological reward-related behaviors: A focus on silent synapses in the nucleus accumbens. Pharmacological Research, 2018, 136, 90-96.	7.1	14
21	Access schedules mediate the impact of high fat diet on ethanol intake and insulin and glucose function in mice. Alcohol, 2020, 86, 45-56.	1.7	11
22	Evaluating the Antinociceptive Efficacy of Cannabidiol Alone or in Combination with Morphine Using the Formalin Test in Male and Female Mice. Cannabis and Cannabinoid Research, 2022, 7, 648-657.	2.9	11
23	Electrophysiological Analysis of Synaptic Transmission. Neuromethods, 2016, , .	0.3	10
24	The effect of prescribing antibiotics with opioids on the development of opioid use disorder: a national database study. Journal of Addictive Diseases, 2022, 40, 62-70.	1.3	10
25	Amplitude. Neuromethods, 2016, , 165-173.	0.3	6
26	A novel method to study reward-context associations and drug-seeking behaviors. Journal of Neuroscience Methods, 2020, 343, 108857.	2.5	5
27	Acute and chronic bupropion treatment does not prevent morphine-induced conditioned place preference in mice. European Journal of Pharmacology, 2020, 889, 173638.	3.5	5
28	Different classes of antibiotics have varying effects on the risk of developing opioid use disorder: a national database study. Journal of Substance Use, 2023, 28, 101-111.	0.7	3
29	Pre vs. Post synaptic Effect. Neuromethods, 2016, , 175-186.	0.3	2
30	Measuring Presynaptic Release Probability. Neuromethods, 2016, , 133-143.	0.3	1
31	Electrical Theory. Neuromethods, 2016, , 17-31.	0.3	1
32	Extracellular and Intracellular Recordings. Neuromethods, 2016, , 3-15.	0.3	1
33	Measurement of Silent Synapses. Neuromethods, 2016, , 217-224.	0.3	1
34	Long-Term Measurements. Neuromethods, 2016, , 145-156.	0.3	1
35	Extracellular Recordings. Neuromethods, 2016, , 249-257.	0.3	0
36	Isolation of Synaptic Current. Neuromethods, 2016, , 101-110.	0.3	0

#	Article	IF	CITATIONS
37	Measurement of a Single Synapse. Neuromethods, 2016, , 209-215.	0.3	O
38	Fast and Slow Synaptic Currents. Neuromethods, 2016, , 111-120.	0.3	0
39	Kinetics of Synaptic Current. Neuromethods, 2016, , 193-205.	0.3	0
40	Patch Pipettes (Micropipettes). Neuromethods, 2016, , 69-78.	0.3	0
41	Spatiotemporal Effects of Synaptic Current. Neuromethods, 2016, , 79-89.	0.3	O
42	Salt Environment. Neuromethods, 2016, , 55-68.	0.3	0
43	Dendritic Patch. Neuromethods, 2016, , 225-231.	0.3	O
44	Measuring Reversal Potentials. Neuromethods, 2016, , 157-162.	0.3	0
45	Electrophysiological and Visual Tags. Neuromethods, 2016, , 235-245.	0.3	O