Kersey Pj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5772057/publications.pdf

Version: 2024-02-01

93	16,461	52	87
papers	citations	h-index	g-index
101	101	101	28198
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Uses and benefits of digital sequence information from plant genetic resources: Lessons learnt from botanical collections. Plants People Planet, 2022, 4, 33-43.	1.6	10
2	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	124
3	Standards recommendations for the Earth BioGenome Project. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
4	Green plant genomes: What we know in an era of rapidly expanding opportunities. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	65
5	Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Research, 2021, 49, D1452-D1463.	6.5	83
6	ELIXIRâ€EXCELERATE: establishing Europe's data infrastructure for the life science research of the future. EMBO Journal, 2021, 40, e107409.	3 . 5	18
7	The salmon louse genome: Copepod features and parasitic adaptations. Genomics, 2021, 113, 3666-3680.	1.3	17
8	Ensembl Genomes 2020—enabling non-vertebrate genomic research. Nucleic Acids Research, 2020, 48, D689-D695.	6.5	416
9	Conservation Policy: Helping or hindering science to unlock properties of plants and fungi. Plants People Planet, 2020, 2, 535-545.	1.6	18
10	Mobilizing Crop Biodiversity. Molecular Plant, 2020, 13, 1341-1344.	3.9	50
11	Selecting for useful properties of plants and fungi – Novel approaches, opportunities, and challenges. Plants People Planet, 2020, 2, 409-420.	1.6	17
12	Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytologist, 2020, 227, 260-273.	3 . 5	84
13	Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. Frontiers in Plant Science, 2019, 10, 1102.	1.7	124
14	Collaborative Annotation Redefines Gene Sets for Crucial Phytopathogens. Frontiers in Microbiology, 2019, 10, 2477.	1.5	9
15	Plant genome sequences: past, present, future. Current Opinion in Plant Biology, 2019, 48, 1-8.	3.5	107
16	Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research, 2018, 46, D802-D808.	6.5	489
17	Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Research, 2018, 46, D1181-D1189.	6.5	147
18	Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytologist, 2018, 217, 1407-1419.	3.5	85

#	Article	IF	Citations
19	Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Scientific Reports, 2018, 8, 4834.	1.6	131
20	WormBase 2017: molting into a new stage. Nucleic Acids Research, 2018, 46, D869-D874.	6.5	172
21	The genome of the biting midge Culicoides sonorensis and gene expression analyses of vector competence for bluetongue virus. BMC Genomics, 2018, 19, 624.	1.2	19
22	Using WormBase ParaSite: An Integrated Platform for Exploring Helminth Genomic Data. Methods in Molecular Biology, 2018, 1757, 471-491.	0.4	48
23	Databases and Tools for the Analysis of the Barley Genome. Compendium of Plant Genomes, 2018, , 377-394.	0.3	1
24	WormBase ParaSite â° a comprehensive resource for helminth genomics. Molecular and Biochemical Parasitology, 2017, 215, 2-10.	0.5	527
25	An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 2017, 27, 885-896.	2.4	464
26	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	13.7	1,365
27	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	2.4	130
28	Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomic Data. Methods in Molecular Biology, 2017, 1533, 1-31.	0.4	189
29	RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Research, 2017, 45, D128-D134.	6.5	174
30	transPLANT Resources for Triticeae Genomic Data. Plant Genome, 2016, 9, plantgenome2015.06.0038.	1.6	8
31	Measures for interoperability of phenotypic data: minimum information requirements and formatting. Plant Methods, 2016, 12, 44.	1.9	109
32	Gramene database: Navigating plant comparative genomics resources. Current Plant Biology, 2016, 7-8, 10-15.	2.3	51
33	Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathogens and Global Health, 2016, 110, 164-172.	1.0	3
34	Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Research, 2016, 44, D1133-D1140.	6. 5	138
35	PhytoPath: an integrative resource for plant pathogen genomics. Nucleic Acids Research, 2016, 44, D688-D693.	6.5	42
36	Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Research, 2016, 44, D574-D580.	6.5	530

#	Article	lF	CITATIONS
37	WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Research, 2016, 44, D774-D780.	6.5	329
38	Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 2016, 1374, 115-140.	0.4	216
39	Towards recommendations for metadata and data handling in plant phenotyping. Journal of Experimental Botany, 2015, 66, 5417-5427.	2.4	116
40	PomBase 2015: updates to the fission yeast database. Nucleic Acids Research, 2015, 43, D656-D661.	6.5	95
41	Triticeae Resources in Ensembl Plants. Plant and Cell Physiology, 2015, 56, e3-e3.	1.5	59
42	RNAcentral: an international database of ncRNA sequences. Nucleic Acids Research, 2015, 43, D123-D129.	6.5	103
43	De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum. PLoS ONE, 2014, 9, e96855.	1.1	55
44	WormBase 2014: new views of curated biology. Nucleic Acids Research, 2014, 42, D789-D793.	6.5	149
45	Gramene 2013: comparative plant genomics resources. Nucleic Acids Research, 2014, 42, D1193-D1199.	6.5	163
46	Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Research, 2014, 42, D546-D552.	6.5	205
47	Ribosomic DNA intergenic spacer 1 region is useful when identifying Candida parapsilosis spp. complex based on high-resolution melting analysis. Medical Mycology, 2014, 52, 472-481.	0.3	12
48	Studying Culicoides vectors of BTV in the post-genomic era: Resources, bottlenecks to progress and future directions. Virus Research, 2014, 182, 43-49.	1.1	49
49	Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2013, 2, 10.	3.3	582
50	WormBase. Worm, 2012, 1, 15-21.	1.0	14
51	The Gene Ontology: enhancements for 2011. Nucleic Acids Research, 2012, 40, D559-D564.	6.5	191
52	Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Research, 2012, 40, D91-D97.	6.5	179
53	PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Research, 2012, 40, D695-D699.	6.5	288
54	WormBase 2012: more genomes, more data, new website. Nucleic Acids Research, 2012, 40, D735-D741.	6.5	175

#	Article	lF	CITATIONS
55	Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491, 705-710.	13.7	983
56	Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 2012, 487, 94-98.	13.7	1,086
57	Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar030-bar030.	1.4	1,186
58	Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Research, 2011, 21, 2224-2241.	2.4	443
59	RNAcentral: A vision for an international database of RNA sequences. Rna, 2011, 17, 1941-1946.	1.6	67
60	Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, 2011, 477, 419-423.	13.7	593
61	Gramene database in 2010: updates and extensions. Nucleic Acids Research, 2011, 39, D1085-D1094.	6.5	182
62	Ensembl Genomes: Extending Ensembl across the taxonomic space. Nucleic Acids Research, 2010, 38, D563-D569.	6.5	138
63	An International Bioinformatics Infrastructure to Underpin the <i>Arabidopsis</i> Community. Plant Cell, 2010, 22, 2530-2536.	3.1	23
64	Genomic information infrastructure after the deluge. Genome Biology, 2010, 11, 402.	13.9	19
65	In Silico Characterization of Proteins: UniProt, InterPro and Integr8. Molecular Biotechnology, 2008, 38, 165-177.	1.3	53
66	Building a Biological Space Based on Protein Sequence Similarities and Biological Ontologies. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 653-660.	0.6	1
67	The EMBL Nucleotide Sequence and Genome Reviews Databases. , 2007, 406, 1-21.		14
68	Genome Reviews: Standardizing Content and Representation of Information about Complete Genomes. OMICS A Journal of Integrative Biology, 2006, 10, 114-118.	1.0	25
69	Linking publication, gene and protein data. Nature Cell Biology, 2006, 8, 1183-1189.	4.6	33
70	Biological Databases: Infrastructure, Content and Integration. , 2005, , 11-28.		3
71	Databases and Resources for in silico Proteome Analysis. Methods of Biochemical Analysis, 2005, , 395-414.	0.2	1
72	The Integr8 project-a resource for genomic and proteomic data. In Silico Biology, 2005, 5, 179-85.	0.4	21

#	Article	IF	CITATIONS
73	Integr8 and Genome Reviews: integrated views of complete genomes and proteomes. Nucleic Acids Research, 2004, 33, D297-D302.	6.5	125
74	Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones. PLoS Biology, 2004, 2, e162.	2.6	290
75	The HUPO PSI's Molecular Interaction formatâ€"a community standard for the representation of protein interaction data. Nature Biotechnology, 2004, 22, 177-183.	9.4	581
76	The International Protein Index: An integrated database for proteomics experiments. Proteomics, 2004, 4, 1985-1988.	1.3	685
77	UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Research, 2004, 33, D141-D146.	6.5	140
78	The HUPO Proteomics Standards Initiative Meeting: Towards Common Standards for Exchanging Proteomics Data. Comparative and Functional Genomics, 2003, 4, 16-19.	2.0	26
79	Progress in Establishing Common Standards for Exchanging Proteomics Data: The Second Meeting of the HUPO Proteomics Standards Initiative. Comparative and Functional Genomics, 2003, 4, 203-206.	2.0	16
80	Automated annotation of microbial proteomes in SWISS-PROT. Computational Biology and Chemistry, 2003, 27, 49-58.	1.1	125
81	The Gene Ontology Annotation (GOA) Project: Implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Research, 2003, 13, 662-672.	2.4	297
82	The Proteome Analysis database: a tool for the in silico analysis of whole proteomes. Nucleic Acids Research, 2003, 31, 414-417.	6. 5	64
83	Integr8: enhanced inter-operability of European molecular biology databases. Methods of Information in Medicine, 2003, 42, 154-60.	0.7	4
84	Applications of InterPro in protein annotation and genome analysis. Briefings in Bioinformatics, 2002, 3, 285-295.	3.2	54
85	Proteome Analysis Database: online application of InterPro and CluSTr for the functional classification of proteins in whole genomes. Nucleic Acids Research, 2001, 29, 44-48.	6.5	84
86	VARSPLIC: alternatively-spliced protein sequences derived from SWISS-PROT and TrEMBL. Bioinformatics, 2000, 16, 1048-1049.	1.8	47
87	Cell cycle, DNA damage and heat shock regulate. Molecular Genetics and Genomics, 1996, 252, 284.	2.4	2
88	Positive and negative roles for cdc10 in cell cycle gene expression. Nucleic Acids Research, 1995, 23, 4761-4768.	6.5	37
89	Computational Methods and Bioinformatic Tools. , 0, , 769-904.		0
90	Data management challenges for artificial intelligence in plant and agricultural research. F1000Research, 0, 10, 324.	0.8	7

KERSEY PJ

#	Article	IF	CITATIONS
91	Ten Simples Rules on How to Organise a Bioinformatics Hackathon. EMBnet Journal, 0, 26, e983.	0.2	O
92	Recommendations for the formatting of Variant Call Format (VCF) files to make plant genotyping data FAIR. F1000Research, 0, 11, 231.	0.8	2
93	Recommendations for the formatting of Variant Call Format (VCF) files to make plant genotyping data FAIR. F1000Research, 0, 11, 231.	0.8	4