Satpal Virdee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5771203/publications.pdf

Version: 2024-02-01

22 1,705 16
papers citations h-index

26 26 26 2182 all docs docs citations times ranked citing authors

642732

23

g-index

#	Article	IF	CITATIONS
1	Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nature Chemical Biology, 2010, 6, 750-757.	8.0	269
2	Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nature Communications, 2014, 5, 4763.	12.8	269
3	Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature, 2018, 556, 381-385.	27.8	178
4	Traceless and Site-Specific Ubiquitination of Recombinant Proteins. Journal of the American Chemical Society, 2011, 133, 10708-10711.	13.7	161
5	Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability. Molecular Cell, 2018, 70, 150-164.e6.	9.7	142
6	Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2228-2233.	7.1	124
7	An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nature Structural and Molecular Biology, 2012, 19, 62-71.	8.2	122
8	Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Nature Chemical Biology, 2016, 12, 324-331.	8.0	90
9	Genetically Directing É›-N, N-Dimethyl-l-Lysine in Recombinant Histones. Chemistry and Biology, 2010, 17, 1072-1076.	6.0	82
10	Deubiquitinating enzyme amino acid profiling reveals a class of ubiquitin esterases. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,118$	7.1	50
11	Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Nature Chemical Biology, 2020, 16, 1227-1236.	8.0	46
12	Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers. Biochemical Journal, 2015, 466, 489-498.	3.7	38
13	Photocrosslinking Activity-Based Probes for Ubiquitin RING E3 Ligases. Cell Chemical Biology, 2020, 27, 74-82.e6.	5.2	26
14	Semisynthetic Src SH2 Domains Demonstrate Altered Phosphopeptide Specificity Induced by Incorporation of Unnatural Lysine Derivatives. Chemistry and Biology, 2010, 17, 274-284.	6.0	19
15	Orthogonal Thiol Functionalization at a Single Atomic Center for Profiling Transthiolation Activity of E1 Activating Enzymes. ACS Chemical Biology, 2015, 10, 1542-1554.	3.4	18
16	Genetically Directed Production of Recombinant, Isosteric and Nonhydrolysable Ubiquitin Conjugates. ChemBioChem, 2016, 17, 1472-1480.	2.6	18
17	The Role of Water in Computational and Experimental Derivation of Binding Thermodynamics in SH2 Domains. Chemical Biology and Drug Design, 2006, 67, 38-45.	3.2	10
18	Chemical ubiquitination for decrypting a cellular code. Biochemical Journal, 2016, 473, 1297-1314.	3.7	9

SATPAL VIRDEE

#	Article	IF	CITATION
19	Prediction of Solvation Sites at the Interface of Src SH2 Domain Complexes Using Molecular Dynamics Simulations. Chemical Biology and Drug Design, 2007, 70, 87-99.	3.2	6
20	A Versatile Strategy for the Semisynthetic Production of Ser65 Phosphorylated Ubiquitin and Its Biochemical and Structural Characterisation. ChemBioChem, 2015, 16, 1574-1579.	2.6	5
21	Selective Inhibition of Cysteine-Dependent Enzymes by Bioorthogonal Tethering. Journal of Molecular Biology, 2022, 434, 167524.	4.2	2
22	Activity-based probe profiling of RNF12 E3 ubiquitin ligase function in Tonne-Kalscheuer syndrome. Life Science Alliance, 2022, 5, e202101248.	2.8	2