
Chris D Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5770902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Responsible agriculture must adapt to the wetland character of midâ€latitude peatlands. Global Change Biology, 2022, 28, 3795-3811.	9.5	23
2	Rising dissolved organic carbon concentrations in coastal waters of northwestern Borneo related to tropical peatland conversion. Science Advances, 2022, 8, eabi5688.	10.3	15
3	Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environment, 2022, 3, 426-443.	29.7	28
4	Measuring peat motion and water table dynamics on tropical peatlands using high-resolution time-lapse camera in four different land cover types across South Sumatra and Central Kalimantan. IOP Conference Series: Earth and Environmental Science, 2022, 1025, 012011.	0.3	1
5	Carbon Loss Pathways in Degraded Peatlands: New Insights From Radiocarbon Measurements of Peatland Waters. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	1
6	Nutrient Balance as a Tool for Maintaining Yield and Mitigating Environmental Impacts of Acacia Plantation in Drained Tropical Peatland—Description of Plantation Simulator. Forests, 2021, 12, 312.	2.1	6
7	A Novel Low-Cost, High-Resolution Camera System for Measuring Peat Subsidence and Water Table Dynamics. Frontiers in Environmental Science, 2021, 9, .	3.3	13
8	Global importance of methane emissions from drainage ditches and canals. Environmental Research Letters, 2021, 16, 044010.	5.2	45
9	Overriding water table control on managed peatland greenhouse gas emissions. Nature, 2021, 593, 548-552.	27.8	172
10	Dissolved and gaseous nitrogen losses in forests controlled by soil nutrient stoichiometry. Environmental Research Letters, 2021, 16, 064025.	5.2	9
11	Conversion of Forest to Agriculture Increases Colored Dissolved Organic Matter in a Subtropical Catchment and Adjacent Coastal Environment. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006295.	3.0	10
12	The impact of wildfire on biogeochemical fluxes and water quality in boreal catchments. Biogeosciences, 2021, 18, 3243-3261.	3.3	9
13	Extensive Remineralization of Peatlandâ€Derived Dissolved Organic Carbon and Ocean Acidification in the Sunda Shelf Sea, Southeast Asia. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017292.	2.6	15
14	Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide. Global Change Biology, 2021, 27, 5109-5123.	9.5	50
15	Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience, 2021, 14, 484-490.	12.9	35
16	Linking ecosystem changes to their social outcomes: Lost in translation. Ecosystem Services, 2021, 50, 101327.	5.4	4
17	Cleaner air reveals growing influence of climate on dissolved organic carbon trends in northern headwaters. Environmental Research Letters, 2021, 16, 104009.	5.2	37
18	Contrasting Estuarine Processing of Dissolved Organic Matter Derived From Natural and Humanâ€Impacted Landscapes. Global Biogeochemical Cycles, 2021, 35, e2021GB007023.	4.9	12

#	Article	IF	CITATIONS
19	Livestock-induced N2O emissions may limit the benefits of converting cropland to grazed grassland as a greenhouse gas mitigation strategy for agricultural peatlands. Resources, Conservation and Recycling, 2021, 174, 105764.	10.8	6
20	Impact of water table levels and winter cover crops on greenhouse gas emissions from cultivated peat soils. Science of the Total Environment, 2020, 719, 135130.	8.0	13
21	Effects of acidity on dissolved organic carbon in organic soil extracts, pore water and surface litters. Science of the Total Environment, 2020, 703, 135585.	8.0	8
22	Raising the groundwater table in the non-growing season can reduce greenhouse gas emissions and maintain crop productivity in cultivated fen peats. Journal of Cleaner Production, 2020, 262, 121179.	9.3	16
23	Falkland Island peatland development processes and the pervasive presence of fire. Quaternary Science Reviews, 2020, 240, 106391.	3.0	9
24	Dynamics of dissolved organic matter in headwaters: comparison of headwater streams with contrasting DOM and nutrient composition. Aquatic Sciences, 2020, 82, 1.	1.5	11
25	Impact of forest plantation on methane emissions from tropical peatland. Global Change Biology, 2020, 26, 2477-2495.	9.5	34
26	Zones of influence for soil organic matter dynamics: A conceptual framework for data and models. Global Change Biology, 2019, 25, 3996-4007.	9.5	13
27	Comment on: "Peatland carbon stocks and burn history: Blanket bog peat core evidence highlights charcoal impacts on peat physical properties and longâ€ŧerm carbon storage,―by A. Heinemeyer, Q. Asena, W. L. Burn and A. L. Jones (<i>Geo: Geography and Environment</i> 2018; e00063). Geo: Geography and Environment, 2019, 6. e00075.	0.8	2
28	Microbial utilization of low molecular weight organic carbon substrates in cultivated peats in response to warming and soil degradation. Soil Biology and Biochemistry, 2019, 139, 107629.	8.8	33
29	Validity of managing peatlands with fire. Nature Geoscience, 2019, 12, 884-885.	12.9	9
30	Variation in dissolved organic matter (DOM) stoichiometry in U.K. freshwaters: Assessing the influence of land cover and soil C:N ratio on DOM composition. Limnology and Oceanography, 2019, 64, 2328-2340.	3.1	49
31	ls the †̃enzyme latch' or †̃iron gate' the key to protecting soil organic carbon in peatlands?. Geoderm 2019, 349, 107-113.	a, _{5.1}	49
32	Peatland initiation and carbon accumulation in the Falkland Islands. Quaternary Science Reviews, 2019, 212, 213-218.	3.0	16
33	Effect of restoration on saltmarsh carbon accumulation in Eastern England. Biology Letters, 2019, 15, 20180773.	2.3	47
34	Dynamic Modeling and Target Loads of Sulfur and Nitrogen for Surface Waters in Finland, Norway, Sweden, and the United Kingdom. Environmental Science & Technology, 2019, 53, 5062-5070.	10.0	5
35	Misinterpreting carbon accumulation rates in records from near-surface peat. Scientific Reports, 2019, 9, 17939.	3.3	44
36	Unified concepts for understanding and modelling turnover of dissolved organic matter from freshwaters to the ocean: the UniDOM model. Biogeochemistry, 2019, 146, 105-123.	3.5	33

#	Article	IF	CITATIONS
37	Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma, 2019, 338, 410-421.	5.1	84
38	The full carbon balance of a rewetted cropland fen and a conservation-managed fen. Agriculture, Ecosystems and Environment, 2019, 269, 1-12.	5.3	16
39	Terrestrial dissolved organic matter distribution in the North Sea. Science of the Total Environment, 2018, 630, 630-647.	8.0	64
40	Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests. Environmental Pollution, 2018, 238, 884-893.	7.5	29
41	Balancing macronutrient stoichiometry to alleviate eutrophication. Science of the Total Environment, 2018, 634, 439-447.	8.0	72
42	Methane and carbon dioxide fluxes from open and blocked ditches in a blanket bog. Plant and Soil, 2018, 424, 619-638.	3.7	13
43	Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture, Ecosystems and Environment, 2018, 253, 62-81.	5.3	289
44	Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences, 2018, 15, 7435-7450.	3.3	41
45	Peatland ditch blocking has no effect on dissolved organic matter (<scp>DOM</scp>) quality. Hydrological Processes, 2018, 32, 3891-3906.	2.6	16
46	The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia. Hydrology and Earth System Sciences, 2018, 22, 5281-5298.	4.9	53
47	Factors Affecting the Leaching of Dissolved Organic Carbon after Tree Dieback in an Unmanaged European Mountain Forest. Environmental Science & Technology, 2018, 52, 6291-6299.	10.0	23
48	The impact of ditch blocking on fluvial carbon export from a <scp>UK</scp> blanket bog. Hydrological Processes, 2018, 32, 2141-2154.	2.6	13
49	Can on-site management mitigate nitrogen deposition impacts in non-wooded habitats?. Biological Conservation, 2017, 212, 464-475.	4.1	37
50	Historical peat loss explains limited short-term response of drained blanket bogs to rewetting. Journal of Environmental Management, 2017, 188, 278-286.	7.8	20
51	Metrics for evaluating the ecological benefits of decreased nitrogen deposition. Biological Conservation, 2017, 212, 454-463.	4.1	22
52	Managing for nitrogen, the lesser of two evils. A response to Maes et al Biological Conservation, 2017, 212, 495-496.	4.1	0
53	Long-term nitrogen deposition increases heathland carbon sequestration. Science of the Total Environment, 2017, 592, 426-435.	8.0	32
54	Quantifying tropical peatland dissolved organic carbon (DOC) using UV-visible spectroscopy. Water Research, 2017, 115, 229-235.	11.3	35

#	Article	IF	CITATIONS
55	Widespread Increases in Iron Concentration in European and North American Freshwaters. Global Biogeochemical Cycles, 2017, 31, 1488-1500.	4.9	79
56	Variability in organic carbon reactivity across lake residence time and trophic gradients. Nature Geoscience, 2017, 10, 832-835.	12.9	114
57	Sustained Biogeochemical Impacts of Wildfire in a Mountain Lake Catchment. Ecosystems, 2017, 20, 813-829.	3.4	17
58	Modelling impacts of atmospheric deposition and temperature on long-term DOC trends. Science of the Total Environment, 2017, 578, 323-336.	8.0	31
59	Management effects on greenhouse gas dynamics in fen ditches. Science of the Total Environment, 2017, 578, 601-612.	8.0	26
60	Denial of longâ€ŧerm issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology, 2017, 23, 977-982.	9.5	114
61	The impact of ditch blocking on the hydrological functioning of blanket peatlands. Hydrological Processes, 2017, 31, 525-539.	2.6	25
62	Diel Surface Temperature Range Scales with Lake Size. PLoS ONE, 2016, 11, e0152466.	2.5	89
63	Sporadic hotspots for physico-chemical retention of aquatic organic carbon: from peatland headwater source to sea. Aquatic Sciences, 2016, 78, 491-504.	1.5	27
64	Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon. Science of the Total Environment, 2016, 560-561, 110-122.	8.0	50
65	Predicting sulphur and nitrogen deposition using a simple statistical method. Atmospheric Environment, 2016, 140, 456-468.	4.1	36
66	Time for responsible peatland agriculture. Science, 2016, 354, 562-562.	12.6	18
67	Transformations in DOC along a source to sea continuum; impacts of photo-degradation, biological processes and mixing. Aquatic Sciences, 2016, 78, 433-446.	1.5	41
68	Controls on the processing and fate of terrestrially-derived organic carbon in aquatic ecosystems: synthesis of special issue. Aquatic Sciences, 2016, 78, 415-418.	1.5	10
69	Spatial patterns and environmental constraints on ecosystem services at a catchment scale. Science of the Total Environment, 2016, 572, 1586-1600.	8.0	44
70	Plant functional type affects nitrogen use efficiency in high-Arctic tundra. Soil Biology and Biochemistry, 2016, 94, 19-28.	8.8	28
71	The greenhouse gas (GHG) emissions associated with aquatic carbon removal during drinking water treatment. Aquatic Sciences, 2016, 78, 561-572.	1.5	8
72	The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. Aquatic Sciences, 2016, 78, 573-590.	1.5	105

#	Article	IF	CITATIONS
73	Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom. Biogeosciences, 2015, 12, 5291-5308.	3.3	39
74	Investigations of freezing and cold storage for the analysis of peatland dissolved organic carbon (DOC) and absorbance properties. Environmental Sciences: Processes and Impacts, 2015, 17, 1290-1301.	3.5	37
75	Niche models for British plants and lichens obtained using an ensemble approach. New Journal of Botany, 2015, 5, 89-100.	0.1	14
76	Spatial controls on dissolved organic carbon in upland waters inferred from a simple statistical model. Biogeochemistry, 2015, 123, 363-377.	3.5	26
77	The effect of peatland drainage and rewetting (ditch blocking) on extracellular enzyme activities and water chemistry. Soil Use and Management, 2015, 31, 67-76.	4.9	24
78	Dynamic Geochemical Models to Assess Deposition Impacts and Target Loads of Acidity for Soils and Surface Waters. Environmental Pollution, 2015, , 225-251.	0.4	3
79	Modelling inorganic nitrogen in runoff: Seasonal dynamics at four European catchments as simulated by the MAGIC model. Science of the Total Environment, 2015, 536, 1019-1028.	8.0	10
80	Can the heterogeneity in stream dissolved organic carbon be explained by contributing landscape elements?. Biogeosciences, 2014, 11, 1199-1213.	3.3	48
81	Contrasting vulnerability of drained tropical and highâ€latitude peatlands to fluvial loss of stored carbon. Clobal Biogeochemical Cycles, 2014, 28, 1215-1234.	4.9	69
82	Infilled Ditches are Hotspots of Landscape Methane Flux Following Peatland Re-wetting. Ecosystems, 2014, 17, 1227-1241.	3.4	57
83	Assessing Recovery from Acidification of European Surface Waters in the Year 2010: Evaluation of Projections Made with the MAGIC Model in 1995. Environmental Science & Technology, 2014, 48, 13280-13288.	10.0	30
84	Evaluating effects of land management on greenhouse gas fluxes and carbon balances in boreo-temperate lowland peatland systems. Environmental Evidence, 2014, 3, 5.	2.7	38
85	Past acidification and recovery of surface waters, soils and ecology in the United Kingdom: Prospects for the future under current deposition and land use protocols. Ecological Indicators, 2014, 37, 381-395.	6.3	9
86	Increased inorganic nitrogen leaching from a mountain grassland ecosystem following grazing removal: a hangover of past intensive land-use?. Biogeochemistry, 2014, 119, 125-138.	3.5	18
87	Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: Linking process understanding to ecosystem service valuation. Ecosystem Services, 2014, 9, 5-19.	5.4	72
88	Application of a simple multiplicative spatio-temporal stream water quality model to the river Conwy, North Wales. Environmental Sciences: Processes and Impacts, 2014, 16, 1600-1607.	3.5	6
89	Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosystem Services, 2014, 9, 54-65.	5.4	98
90	Improving the link between payments and the provision of ecosystem services in agri-environment schemes. Ecosystem Services, 2014, 9, 44-53.	5.4	91

#	Article	IF	CITATIONS
91	Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	14
92	UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation. Environmental Sciences: Processes and Impacts, 2014, 16, 1445.	3.5	74
93	Persistent surface water acidification in an organic soil-dominated upland region subject to high atmospheric deposition: The North York Moors, UK. Ecological Indicators, 2014, 37, 304-316.	6.3	19
94	Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008. Ecological Indicators, 2014, 37, 287-303.	6.3	91
95	Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter. Environmental Pollution, 2014, 184, 271-282.	7.5	34
96	REVIEW: The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 2013, 50, 812-829.	4.0	169
97	Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment. Estuarine, Coastal and Shelf Science, 2013, 120, 12-20.	2.1	82
98	Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry, 2013, 115, 33-51.	3.5	87
99	Soil–solution partitioning of <scp>DOC</scp> in acid organic soils: results from a <scp>UK</scp> field acidification and alkalization experiment. European Journal of Soil Science, 2013, 64, 787-796.	3.9	26
100	Resilience of upland soils to long term environmental changes. Geoderma, 2013, 197-198, 36-42.	5.1	9
101	Natural revegetation of bog pools after peatland restoration involving ditch blocking—The influence of pool depth and implications for carbon cycling. Ecological Engineering, 2013, 57, 297-301.	3.6	18
102	Methane indicator values for peatlands: a comparison of species and functional groups. Global Change Biology, 2013, 19, 1141-1150.	9.5	35
103	Relationship between critical load exceedances and empirical impact indicators at Integrated Monitoring sites across Europe. Ecological Indicators, 2013, 24, 256-265.	6.3	23
104	Quantifying dissolved organic carbon concentrations in upland catchments using phenolic proxy measurements. Journal of Hydrology, 2013, 477, 251-260.	5.4	15
105	The rate of loss of dissolved organic carbon (DOC) through a catchment. Journal of Hydrology, 2013, 492, 139-150.	5.4	85
106	Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature, 2013, 493, 660-663.	27.8	270
107	Comment on "Soil CO ₂ , CH ₄ and N ₂ O fluxes from an afforested lowland raised peat bog in Scotland: implications for drainage and restoration&:quot: by Yamulki et al. (2013). Biogeosciences. 2013. 10. 7623-7630.	3.3	5
108	Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biology, 2012, 18, 3317-3331.	9.5	221

#	Article	IF	CITATIONS
109	Dominance of biologically produced nitrate in upland waters of Great Britain indicated by stable isotopes. Biogeochemistry, 2012, 111, 535-554.	3.5	14
110	N14C: A plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition. Ecological Modelling, 2012, 247, 11-26.	2.5	40
111	Methane emissions from soils: synthesis and analysis of a large <scp>UK</scp> data set. Global Change Biology, 2012, 18, 1657-1669.	9.5	107
112	Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environmental Pollution, 2012, 165, 158-166.	7.5	49
113	Experimental simulation of the effects of extreme climatic events on major ions, acidity and dissolved organic carbon leaching from a forested catchment, Gårdsjön, Sweden. Biogeochemistry, 2012, 107, 455-469.	3.5	19
114	Hydrochloric Acid: An Overlooked Driver of Environmental Change. Environmental Science & Technology, 2011, 45, 1887-1894.	10.0	89
115	Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences, 2011, 8, 901-909.	3.3	86
116	Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Global Change Biology, 2011, 17, 3115-3129.	9.5	119
117	Identifying drivers of species compositional change in a semi-natural upland grassland over a 40-year period. Journal of Vegetation Science, 2011, 22, 346-356.	2.2	41
118	What Have Stable Isotope Studies Revealed About the Nature and Mechanisms of N Saturation and Nitrate Leaching from Semi-Natural Catchments?. Ecosystems, 2011, 14, 1021-1037.	3.4	67
119	Modelling the impacts of a nitrogen pollution event on the biogeochemistry of an Arctic glacier. Annals of Claciology, 2010, 51, 163-170.	1.4	14
120	Effects of storm events on mobilisation and in-stream processing of dissolved organic matter (DOM) in a Welsh peatland catchment. Biogeochemistry, 2010, 99, 157-173.	3.5	77
121	Linking monitoring and modelling: can long-term datasets be used more effectively as a basis for large-scale prediction?. Biogeochemistry, 2010, 101, 211-227.	3.5	17
122	The importance of the relationship between scale and process in understanding long-term DOC dynamics. Science of the Total Environment, 2010, 408, 2768-2775.	8.0	211
123	Empirical realised niche models for British higher and lower plants - development and preliminary testing. Journal of Vegetation Science, 2010, 21, 643.	2.2	25
124	The response of dissolved organic carbon (DOC) and the ecosystem carbon balance to experimental drought in a temperate shrubland. European Journal of Soil Science, 2010, 61, 697-709.	3.9	24
125	Longâ€ŧerm drainage for forestry inhibits extracellular phenol oxidase activity in Finnish boreal mire peat. European Journal of Soil Science, 2010, 61, 950-957.	3.9	44
126	Use of dynamic soil–vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview. Ecological Applications, 2010, 20, 60-79.	3.8	88

#	Article	IF	CITATIONS
127	Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model description and uncertainties. Climate Research, 2010, 45, 179-192.	1.1	99
128	Estimating changes in Scottish soil carbon stocks using ECOSSE. II. Application. Climate Research, 2010, 45, 193-205.	1.1	42
129	Carbon balance of UK peatlands: current state of knowledge and future research challenges. Climate Research, 2010, 45, 13-29.	1.1	134
130	Impacts of pollution and climate change on ombrotrophic Sphagnum species in the UK: analysis of uncertainties in two empirical niche models. Climate Research, 2010, 45, 163-177.	1.1	20
131	Model inter-comparison between statistical and dynamic model assessments of the long-term stability of blanket peat in Great Britain (1940–2099). Climate Research, 2010, 45, 227-248.	1.1	12
132	Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table drawâ€down. Global Change Biology, 2009, 15, 794-807.	9.5	79
133	Quantifying terrestrial carbon stocks: examining the spatial variation in two upland areas in the UK and a comparison to mapped estimates of soil carbon. Soil Use and Management, 2009, 25, 320-332.	4.9	29
134	The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 2009, 258, 1814-1823.	3.2	309
135	UK land use and soil carbon sequestration. Land Use Policy, 2009, 26, S274-S283.	5.6	187
136	Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry, 2008, 91, 13-35.	3.5	126
137	Increasing Iron Concentrations in UK Upland Waters. Aquatic Geochemistry, 2008, 14, 263-288.	1.3	80
138	Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiology Ecology, 2008, 66, 426-436.	2.7	98
139	Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores. Soil Use and Management, 2008, 24, 357-365.	4.9	27
140	Groundwater nitrogen composition and transformation within a moorland catchment, mid-Wales. Science of the Total Environment, 2008, 390, 241-254.	8.0	19
141	Buffering of recovery from acidification by organic acids. Science of the Total Environment, 2008, 404, 316-325.	8.0	56
142	Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland. Soil Biology and Biochemistry, 2008, 40, 1519-1532.	8.8	116
143	Nitrogen deposition increases the acquisition of phosphorus and potassium by heather Calluna vulgaris. Environmental Pollution, 2008, 155, 201-207.	7.5	47
144	Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils. Environmental Pollution, 2008, 156, 636-643.	7.5	19

#	Article	IF	CITATIONS
145	Effects of decreasing acid deposition and climate change on acid extremes in an upland stream. Hydrology and Earth System Sciences, 2008, 12, 337-351.	4.9	32
146	Evidence against recent climate-induced destabilisation of soil carbon from14C analysis of riverine dissolved organic matter. Geophysical Research Letters, 2007, 34, .	4.0	115
147	The role of catchment characteristics in determining surface water nitrogen in four upland regions in the UK. Hydrology and Earth System Sciences, 2007, 11, 356-371.	4.9	50
148	Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 2007, 450, 537-540.	27.8	1,471
149	Acidic episodes retard the biological recovery of upland British streams from chronic acidification. Global Change Biology, 2007, 13, 2439-2452.	9.5	86
150	Spatial and Seasonal Variations in Nitrogen Leaching and Acidity across Four Acid-impacted Regions of the UK. Water, Air, and Soil Pollution, 2007, 185, 3-19.	2.4	15
151	Acidification of Lochnagar and Prospects for Recovery. , 2007, , 317-344.		3
152	Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition. Environmental Pollution, 2006, 143, 468-478.	7.5	51
153	Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology, 2006, 12, 2044-2053.	9.5	438
154	Vegetation Type Affects the Relationship Between Soil Carbon to Nitrogen Ratio and Nitrogen Leaching. Water, Air, and Soil Pollution, 2006, 177, 335-347.	2.4	40
155	Evidence that Soil Carbon Pool Determines Susceptibility of Semi-Natural Ecosystems to Elevated Nitrogen Leaching. Ecosystems, 2006, 9, 453-462.	3.4	71
156	A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network. Science of the Total Environment, 2006, 365, 167-185.	8.0	24
157	Modelling the effect of climate change on recovery of acidified freshwaters: Relative sensitivity of individual processes in the MAGIC model. Science of the Total Environment, 2006, 365, 154-166.	8.0	62
158	A conceptual model of spatially heterogeneous nitrogen leaching from a welsh moorland catchment. Water, Air and Soil Pollution, 2005, 4, 97-105.	0.8	5
159	Modelling the effects of climate change on an acidic upland stream. Biogeochemistry, 2005, 74, 21-46.	3.5	57
160	Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environmental Pollution, 2005, 137, 135-149.	7.5	64
161	The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue. Environmental Pollution, 2005, 137, 3-13.	7.5	89
162	Trends in surface water chemistry of acidified UK Freshwaters, 1988–2002. Environmental Pollution, 2005, 137, 27-39.	7.5	78

#	Article	IF	CITATIONS
163	Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution, 2005, 137, 55-71.	7.5	817
164	Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters. Environmental Pollution, 2005, 137, 73-82.	7.5	63
165	Trends in Dissolved Organic Carbon in UK Rivers and Lakes. Biogeochemistry, 2004, 70, 369-402.	3.5	236
166	A Conceptual Model of Spatially Heterogeneous Nitrogen Leaching from a Welsh Moorland Catchment. Water, Air and Soil Pollution, 2004, 4, 97-105.	0.8	8
167	Constrained multivariate trend analysis applied to water quality variables. Environmetrics, 2002, 13, 43-53.	1.4	5
168	Terrestrial export of organic carbon. Nature, 2002, 415, 862-862.	27.8	212
169	A Comparison of Loch Chemistry from 1955 and 1999 in the Cairngorms, N.E. Scotland. Water, Air and Soil Pollution, 2002, 2, 47-59.	0.8	9
170	Natural and Anthropogenic Changes in The Chemistry of Six UK Mountain Lakes, 1988 to 2000. Water, Air and Soil Pollution, 2002, 2, 33-46.	0.8	9
171	Long-term variability in the deposition of marine ions at west coast sites in the UK Acid Waters Monitoring Network: impacts on surface water chemistry and significance for trend determination. Science of the Total Environment, 2001, 265, 115-129.	8.0	96
172	Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany?. Hydrology and Earth System Sciences, 2001, 5, 367-378.	4.9	50
173	Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrology and Earth System Sciences, 2001, 5, 311-326.	4.9	121
174	Recovery from acidification in European surface waters. Hydrology and Earth System Sciences, 2001, 5, 283-298.	4.9	226
175	Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrology and Earth System Sciences, 2001, 5, 299-310.	4.9	140
176	Chemical trends at lakes and streams in the UK Acid Waters Monitoring Network, 1988-2000: Evidence for recent recovery at a national scale. Hydrology and Earth System Sciences, 2001, 5, 351-366.	4.9	81
177	Title is missing!. Water, Air and Soil Pollution, 2001, 1, 437-453.	0.8	2
178	Monitoring Acid Waters in the UK: 1988–1998 Trends. Water, Air, and Soil Pollution, 2001, 130, 1307-1312.	2.4	15
179	Title is missing!. Water, Air, and Soil Pollution, 2001, 130, 1541-1546.	2.4	23
180	Export of organic carbon from peat soils. Nature, 2001, 412, 785-785.	27.8	837

#	Article	IF	CITATIONS
181	Monitoring Acid Waters in the UK: 1988–1998 Trends. , 2001, , 1307-1312.		2
182	Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation?. Hydrological Processes, 2000, 14, 1745-1749.	2.6	103
183	Surface water acidification in the South Pennines I. Current status and spatial variability. Environmental Pollution, 2000, 109, 11-20.	7.5	36
184	Surface water acidification in the South Pennines II. Temporal trends. Environmental Pollution, 2000, 109, 21-34.	7.5	24
185	Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationships. Hydrological Processes, 1999, 13, 563-575.	2.6	25
186	Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resources Research, 1998, 34, 129-137.	4.2	336
187	A comparison of methods for estimating soil characteristics in regional acidification models; an application of the MAGIC model to Scotland. Hydrology and Earth System Sciences, 1998, 2, 509-520.	4.9	19
188	Predicting regional recovery from acidification; the MAGIC model applied to Scotland, England and Wales. Hydrology and Earth System Sciences, 1998, 2, 543-554.	4.9	16
189	Assessing the contribution of individual dissolved ions to depressions in acid neutralising capacity of streams in the adirondack and Catskill Mountains, New York. Water, Air, and Soil Pollution, 1995, 85, 425-432.	2.4	10
190	Freshwater Ecosystem Responses to Climate Change: The Euro-Limpacs Project. Water Quality Measurements Series, 0, , 313-354.	0.1	6
191	Are peatlands in different states with respect to their thermodynamic behaviour? A simple test of peatland energy and entropy budgets. Hydrological Processes, 0, , e14431.	2.6	0
192	Towards Incorporation of Blue Carbon in Falkland Islands Marine Spatial Planning: A Multi-Tiered Approach. Frontiers in Marine Science, 0, 9, .	2.5	5